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Abstract

We investigate repetitive graph symmetries via the automor-
phism group and how to utilize thus induced quotient graphs.
For this we focus on the notion of descriptive quotients first
described in (Abdulaziz, Norrish, and Gretton 2015). We find
theoretical and practical results about searching and using
these quotients and lay the foundation for future work.

Introduction
Many NP-hard computational problems can be translated to
equivalent graph problems. This allows to apply well-known
graph algorithms and properties to reduce the complexity or
improve solutions for the original problems.

One of the more frequently utilized properties is graph
symmetry. These symmetries can be exploited to reduce the
given graph, and thus the underlying problem, to an equiv-
alent but smaller instance. Following this approach, Abdu-
laziz et al. leveraged graph symmetries to reduce planning
problems in (Abdulaziz, Norrish, and Gretton 2015). The re-
search project this report concludes aimed at lifting and im-
proving the notion of descriptive quotients developed in the
aforementioned work. We investigated how descriptive quo-
tients can be found for arbitrary graphs and which properties
enable efficient search and optimization procedures based on
this concept.

Background
Definitions and Notation
Definition 1 (Groups). We use the standard definition of a
group Φ as a set equipped with an associative operation “·”
that is closed on Φ, an identity element ε ∈ Φ and inverse
elements denoted by σ−1 for σ ∈ Φ. For a subgroup Γ of
Φ we write Γ ≤ Φ. A group generated by the set of ele-
ments {γ1, . . . , γn} is expressed by 〈γ1, . . . , γn〉. The order
or cardinality of the group Φ is denoted by |Φ|.
Definition 2 (Group Operation and Action). We primarily
work with permutation groups in the following and use the
general group operation symbol for permutation composi-
tion if not stated otherwise. We denote the application of a
permutation ρ to an element v of the underlying structure as
ρ(v).

For two permutations α and β we denote the permutation
composition in a right-to-left way as β ·α to express that the
compound acts by first applying α and then β:

(β · α)(v) = β(α(v))

We also leave out the operation symbol · for longer chains of
composition. Therefore, we denote that two group elements
α and β are conjugate with a conjugating element σ as β =
σασ−1.

The orbit of an element v under the action of the group Φ
is written as vΦ. Similarly, the set of all orbits of V under
the action of Φ is denoted as V Φ.
Definition 3 (Graphs). For the scope of this report, we de-
fine a graph G as a tuple (VG, EG) of a set of vertices VG
and a set of edges EG. Our work also focuses only on undi-
rected graphs; thus edges are defined as unordered 2-tuples
of vertices. For ease of notation, we define that GΦ denotes
the orbits of Φ’s action on the vertices ofG. The vertices can
be associated with colors to define a colored graph, as well.
Yet, the colors are not encoded explicitly but as part of the
vertex representation for this report.

If P is a partition of VG, we denote the quotient graph in-
duced by P as G/P . We define this quotient graph to com-
prise the partition’s image as the vertex set and the following
edge set (with the implicit assumption vP 6= wP ):

{(vP , wP ) | vP , wP ∈ P,∃v ∈ vP ,∃w ∈ wP , (v, w) ∈ EG}

Definition 4 (Transversals). We define a transversal to be a
function from a set of sets to a representative of a given set.
For example could a transversal t forGΦ be defined to map
vΦ to v:

∀w.wΦ = vΦ =⇒ t(wΦ) = v

If a transversal of a partition P preserves adjacency in the
quotient graph G/P , i.e. if the representatives of two adja-
cent orbits are also adjacent, then we say that the transver-
sal is consistent withG/P . Based on this, a quotient graph is
defined to be consistent if there exists a consistent transver-
sal for it. In addition, we define a quotient graph to be triv-
ially consistent if all vertices of adjacent subsets are also
adjacent. In this case, all possible transversals are consis-
tent.
Definition 5 (Descriptive Quotient). An automorphism of a
graph is a permutation of its vertices such that the resulting



graph is identical to the original one. We denote the auto-
morphism group of the graph G as A(G).

If the quotient G/GΓ for Γ ≤ A(G) is consistent, it is
called descriptive.

Problem Description
For this research project we investigated descriptive quotient
graphs and explored their applications. The underlying prob-
lem can be defined as:
Problem 1 (DQG1). Given a (possibly colored) graph G,
decide whether there exists any non-trivial subgroup Γ of
A(G) that induces a descriptive quotient G/GΓ.

To decide this problem, it is necessary to acquire informa-
tion about the graph’s automorphism group and then con-
duct a search for subgroups that induce (possibly optimal)
descriptive quotients. Though, the optimality criteria might
differ between applications. For example might smaller quo-
tients be better for some applications while sparser quotients
are better for others.

In general, every graph has an optimal descriptive quo-
tient with regard to any metric. Yet, in some cases the opti-
mum might be the trivial quotient induced by the automor-
phism subgroup consisting of only the identity permutation.
The quotient is thus equal to the original graph and, as a
result, not of any more use than the original problem. De-
spite this weakness, it is necessary to include the trivial quo-
tient to make the metrics also well defined for graphs with
no other descriptive quotients. This can be the case if the
whole automorphism group is trivial or if the induced quo-
tients for all other subgroups contain structures that we call
non-descriptive cores, which are described in more detail in
a latter section.

SAT Encoding
To investigate descriptive quotients further, we encode
whether a quotient graph is consistent as a boolean satisfi-
ability (SAT) problem.

In the following we denote concrete encodings into SAT
variables with J. . .K. The underlying idea is that a variable
can be set to true if and only if it either encodes an exist-
ing edge in the (quotient) graph or an orbit representative
picked by a consistent transversal. The resulting encoding
follows the ideas in (Abdulaziz, Norrish, and Gretton 2015)
and comprises three different parts:

(i) Encoding of edges:
All edges in the original graph and in the induced quotient
graph are encoded to be true:∧

e∈EG

JeK ∧
∧

e′∈EG/GΓ

Je′K (1)

(ii) Encoding of transversals:
For each orbit o ∈ GΓ a transversal picks exactly one ver-
tex in the orbit as the corresponding representative (de-
noted as vo for vertex v picked for orbit o). This is en-
coded as an “Exactly One” constraint. There exist several

1Short for “Descriptive Quotient Graph” problem.

encoding approaches for this kind of constraint but the
simplest is the pairwise encoding (e.g. Cai et al. 2019):

∧
o∈GΓ

∨
v∈o

JvoK ∧
∧

v,w∈o,v 6=w
(¬JvoK ∨ ¬JwoK)

 (2)

(iii) Encoding of consistency constraint:
If there exists an edge e′ between two orbits o1, o2 ∈ GΓ

in the quotient graph, there must also exist an edge e be-
tween their representatives v1 ∈ o1, v2 ∈ o2:∧

e′∈EG/GΓ

(Je′K ∧ Jvo1
1 K ∧ Jvo2

2 K) =⇒ JeK ≡

∧
e′∈EG/GΓ

¬Je′K ∨ ¬Jvo1
1 K ∨ ¬Jvo2

2 K ∨ JeK
(3)

Due to the direct encoding of all edges in both the orig-
inal and the quotient graph for formula (1), every satisfy-
ing assignment must map the edge encodings JeK and Je′K
to true. Thus, all clauses in formula (3) for which e ex-
ists in G are trivially true. Similarly, all clauses in for-
mula (3) for which e′ does not exist in G/GΓ are also triv-
ially true. In conclusion, the formula consisting of only for-
mula (2) and formula (3) without the edge encodings (i.e.
only ¬Jvo1

1 K ∨ ¬Jvo2
2 K for existing edges in the quotient but

non-existing edges in the original graph) is equisatisfiable to
the formula described above.

The resulting formula is then (using again the pairwise
encoding for the Exactly One constraint):

∧
o∈GΓ

∨
v∈o

JvoK ∧
∧

v,w∈o,v 6=w
(¬JvoK ∨ ¬JwoK)

 ∧
∧

(o1,o2)∈EG/GΓ ,v1∈o1,v2∈o2,(v1,v2)/∈EG

¬Jvo1
1 K ∨ ¬Jvo2

2 K
(4)

We note that the reduced formula requires only a reason-
able amount of additional computational effort. The main
reason for this is the lookup for edges in the original graph,
i.e. whether they exist and thus whether a clause in for-
mula (3) is trivially true. Depending on the exact graph rep-
resentation, the necessary effort is comparable to iterating
the edges for formula (1).

It is worth noting, that all satisfying assignments for for-
mula (4) encode exactly one consistent transversal. Though,
if an application does not require a specific consistent
transversal, it is possible to reduce the formula even further
by changing formula (2) from an “Exactly One” encoding to
an “At Least One” encoding. The resulting formula is then:

∧
o∈GΓ

∨
v∈o

JvoK ∧

∧
(o1,o2)∈EG/GΓ ,v1∈o1,v2∈o2,(v1,v2)/∈EG

¬Jvo1
1 K ∨ ¬Jvo2

2 K
(5)



Furthermore, this reduction does not change the satisfia-
bility and thus the encoded statement about the existence of
consistent transversals:
Lemma 1. The formulæ (4) and (5) are equisatisfiable.

We prove this lemma by contradiction:

Proof. We assume that the formulæ (4) and (5) are not equi-
satisfiable. Thus, there exist quotient graphs for which only
one of them is satisfiable.

We first assume that formula (4) is satisfiable whereas
formula (5) is not satisfiable for an arbitrary but fixed quo-
tient graph. We note that formula (5) is a subformula of for-
mula (4) and both are in conjunctive normal form. A satis-
fying assignment to a formula in conjunctive normal form
satisfies also all of its subformulæ. Therefore, the assumed
existence of a satisfying assignment for formula (4) implies
that the same assignment also satisfies formula (5), which is
a contradiction to our assumption.

In a second step we assume that formula (5) is satisfiable
whereas formula (4) is not satisfiable for an arbitrary but
fixed quotient graph. We note that any satisfying assignment
for formula (5) would also satisfy formula (4) if it assigns
the value true to exactly one variable per orbit. Due to our
assumption, there can be no such assignment, but only sat-
isfying assignments for formula (5) such that at least one
orbit contains two true-encoded vertices. We then also know
that the true-encoded vertices of two adjacent orbits form
a complete bipartite graph due to Lemma 6. As a result, it
is possible to extract a consistent transversal from the satis-
fying assignment by picking only one of the true-encoded
vertices for each orbit. The so picked vertices are always ad-
jacent if their corresponding orbits are adjacent. As a result,
by assigning true to only the variables corresponding to this
consistent transversal, we obtain a satisfying assignment for
formula (4), which contradicts our assumption before.

In conclusion, it is not possible that only one of the for-
mulæ (4) and (5) is satisfiable while the other is unsatisfi-
able. Thus, the two formulæ are equisatisfiable.

Search for Descriptive Quotients
To be able to utilize descriptive quotients to their full extend,
we need to decide whether they exist for a specific graph and
also find such a quotient. In general, a search for a graph’s
descriptive quotients operates on the space of subgroups of
the graph’s automorphism group. Therefore, search proce-
dures need to first determine the automorphism group, e.g.
by obtaining a generating set for it. In a next step, subgroups
must be checked until a descriptive quotient is found for one
of them.

As the number of subgroups of the automorphism group
can be very high, a linear search through them is not fea-
sible in most cases. Instead, search procedures prune the
search space based on heuristics and group theoretic prop-
erties. We investigate several such approaches and describe
them in greater detail in the following sections.

Conjugacy
We first examine conjugacy of the automorphism group.
Thereby, we discover that conjugation of both single auto-

morphisms (Lemma 2) and automorphism subgroups (The-
orem 1) preserves consistency of the induced quotient and
thus also descriptiveness:
Lemma 2. If an automorphism induces a descriptive quo-
tient, then also all members of its conjugacy class induce
descriptive quotients.

Proof. We assume that an arbitrary but fixed automorphism
α induces a descriptive quotient and lies in the same con-
jugacy class as a different automorphism β, such that β =
σασ−1 for some automorphism σ.

As α induces a descriptive quotient, there exists a con-
sistent transversal tα on the orbits of α. This allows us to
define a transversal tβ for the orbits of β based on tα by
lifting it with σ:

tβ(oβ) := σ ◦ tα({σ−1(v) | v ∈ oβ})
where oβ is an orbit of β and ◦ denotes function composi-
tion.

We justify this definition by noting that two permutations
are conjugate iff they share the same cycle type. In addition,
we note that if α moves element x to y, then β moves σ(x)
to σ(y), due to:

β(σ(x)) = (σασ−1)(σ(x)) = (σασ−1σ)(x)

= σ(α(x)) = σ(y)

Thus, by moving the elements in oβ by σ−1, we get an orbit
of α (i.e. {σ−1(v) | v ∈ oβ}). Similarly, by moving the rep-
resentative picked by tα back with σ we get a representative
for oβ . As a result, tβ is in fact a transversal of the orbits of
β.

Moreover, tβ is a consistent transversal. This follows
from the fact that tα is consistent. Due to σ−1 being an
automorphism of the graph, the images of two adjacent or-
bits oβ,1 and oβ,2 under σ−1 are also adjacent. Thus, the two
resulting orbits of α, {σ−1(v) | v ∈ oβ,1} and {σ−1(v) | v ∈
oβ,2}, are adjacent as well. Due to this, the representatives
picked by tα for these orbits are also adjacent by the defi-
nition of consistency. Furthermore, the images of these rep-
resentatives under the automorphism σ are again adjacent.
Hence, tβ is a consistent transversal as it picks adjacent rep-
resentatives for adjacent orbits.

In conclusion, β induces a descriptive quotient.

Theorem 1. If an automorphism subgroup induces a de-
scriptive quotient, then also all members of its conjugacy
class induce descriptive quotients.

Proof. We assume that Γα and Γβ are conjugate subgroups
of A(G) with Γβ = σΓασ

−1 for some σ ∈ A(G). We also
assume that Γα induces a descriptive quotient forG with the
consistent transversal tα.

We can then define the same tβ with regard to tα as in
Lemma 2. Due to the well-known fact that the conjugating
element of conjugate subgroups defines a bijection between
their orbits (see e.g. Holt, Eick, and O’Brien 2005, Propo-
sition 4.9), tβ is trivially a transversal of the orbits of Γβ .
Moreover, tβ is also consistent as the reasoning used in the
proof for Lemma 2 can be applied here as well.



It thus follows that Γβ induces a descriptive quotient, too.

These results allow us to reduce the necessary search
space from a possibly super-exponential number of sub-
groups (cf. Holt 2010) to an exponential one. To be more
precise, the number of conjugacy classes of a permutation
group with degree n ≥ 4 is bound by 5(n−1)/3 (Garonzi and
Maróti 2015).

Thus, we define linear search in the set of conjugacy class
representatives as our baseline search method. Due to The-
orem 1, this procedure is a sound and complete way to de-
termine whether a graph has a descriptive quotient and to
obtain such a quotient in the process, as well.

Powerset Search
Our first heuristic search method shifts the search space from
the set of conjugacy class representatives to a powerset of
generators. More specifically, we check the groups gener-
ated by all but the empty subset of the generating set ob-
tained from nauty/Traces. This approach leverages the fact
that the combination of two generators is not guaranteed to
preserve descriptiveness, but is likely to result in a subgroup
from a different conjugacy class.

Albeit the theoretical upper bound for this search is super
exponential (≤ 2ld(|A(G)|), cf. Lemma 4) and thus greater
than for the linear search in the class representatives, we
have found this approach to be preferable for most planning
problems. Graphs from this domain tend to have a single
digit number of generators but several magnitudes more con-
jugacy classes. In addition, the powerset of generators can
be obtained with less computational effort than the conju-
gacy classes. Whereas computing the conjugacy class repre-
sentatives via the standard “solvable radical”/“trivial fitting”
method requires several exponentially complex substeps
(Holt 2010), a generating set is obtained from nauty/traces
anyway and requires no additional overhead.

Non-Descriptive Cores
Another heuristic search method exploits the so called “non-
descriptive cores”. These structures are subgraphs of the
original graph that contain only vertices from a minimal
number of orbits such that there is no consistent transver-
sal for the induced partition. The graphs depicted in fig. 4
and fig. 5 are examples for non-descriptive cores. It is easy
to see, that starting from any vertex, there is no path travers-
ing all colors exactly once that would end again at the start
vertex. The lack of such paths is equivalent to the lack of
consistent partial transversals for the orbits in question.

Due to the reduced formula (5), it becomes clear that non-
descriptive cores directly correspond to unsatisfiable cores
in our SAT encoding. To be more specific, an unsatisfiable
core comprises a number of orbits and their respective “At
Least One” clauses as well as the consistency constraints
that are impossible to fullfil for these orbits.

We utilize this property to find non-descriptive cores eas-
ily and use them as the basis for a constructive search

method. For this, we ask the SAT solver2 to not only decide
whether the formula is satisfiable but also return a minimal
unsatisfiable subformula (MUS) for negative results.

In a next step, the obtained non-descriptive cores are re-
moved from the quotient graph. To achieve this, we recolor
the involved vertices and call again nauty/Traces on the re-
fined graph. For the recoloring it proved to work best if the
vertices are all given completely new colors. This guarantees
that these vertices will lie in singular orbits for the refined
graph. This method is guaranteed to terminate as it either
finds a descriptive quotient for the refined graph or will re-
move all symmetries all together and thus result in the trivial
automorphism group.

We also tested other heuristics to remove non-descriptive
cores based on composition of generators, but their results
were less promising and are thus not included in this report.

Planning Problem Graphs
For our experiments we chose planning problem graphs
based on the representation described in (Abdulaziz, Nor-
rish, and Gretton 2015). The motivation behind this was the
known benefit that planning problems can gain from descrip-
tive quotients. In addition, the corresponding graphs exhibit
a great amount of symmetries that allow to have different
search methods find different quotients.

Furthermore, the existing infrastructure from (Abdulaziz,
Norrish, and Gretton 2015) can be easily adjusted to use
our search methods as a wrapper on top of nauty/Traces.
Though, the usefulness of this application was not experi-
mentally verified for all search methods yet and is left for
future work.

SNAP Network Graphs
As a second application domain, we chose network graphs
from the SNAP dataset (Leskovec and Krevl 2014). Due
to our tool’s restrictions, the experiments were restricted to
undirected graphs only.

In our experiments we found that the network graphs tend
to have up to several magnitudes more generators than the
planning graphs. Furthermore, we found that most network
graphs belong to one of two groups: the first group has
mostly trivially consistent quotients, whereas for the second
group we did not find any results as nauty/Traces were not
able to analyze the graphs in reasonable amounts of time and
memory space.

Do to these findings, most of our search methods did ei-
ther terminate due to running out of resources or find no
better quotient than the complete one induced by the whole
automorphism group. As a result, the SNAP graphs are not
included in the experimental data tables and plots.

Experimental Setup
To determine how feasible and useful our search procedures
are, we conducted several experiments. The basis for all of
these was a reference implementation in Rust (Sextl 2021).
Our implementation comprises all search procedures and

2We tested this approach with the kitten tool that comes with
kissat.



conducts all necessary steps with the help of other more spe-
cialized tools.

In a first step our tool calls nauty/Traces (McKay and
Piperno 2014) to find the automorphism group for a given
input graph. This step results in a generating set for the
group. Based on the group generators, we then conduct the
actual search for descriptive quotients. In each search step,
we check the current quotient for consistency by encoding
it into a SAT formula as described before and call the SAT
solver kissat (Biere et al. 2020) on it. The conjugacy class
representatives are computed with the GAP system (GAP).

All experimental results were obtained on a cluster of 5
virtual machines from the LRZ Compute Cloud. The ma-
chines all had access to 10 Intel(R) Xeon(R) Gold 6148 CPU
cores and 45GB of RAM each3. The timeout for each run
was set to 30 minutes with a memory limit of 6GB for the
whole run, of which GAP was allowed at most 4GB.

Experimental Results
We tested 4263 different planing problem graphs in total, of
which 938 (about 22%) contained no symmetries. Table 1
contains the detailed numbers of descriptive quotients found
per method per problem domain. Whereas the top row sum-
marizes the results for all graphs, the middle rows break
these down for the underlying problem domains. The bot-
tom rows show then a small selection of results for individ-
ual planning problems.

We compared our three search methods against the quo-
tient induced by the whole automorphism group (called
“Full Quotient” in the table) as a baseline. It becomes ap-
parent that for most of the planning problem graphs (about
82%), the quotient induced by the whole automorphism
group is already descriptive. For these no search is needed,
but the quotient obtained from nauty/Traces already suffices.

Yet, our search methods make it possible to find descrip-
tive quotients for up to 88% of the graphs. Both searching
in the powerset of generators and removing non-descriptive
cores by recoloring perform equally well for this task for
all domains. In direct comparison to the search heuristics,
the complete search through the conjugacy class represen-
tatives did not perform well. It successfully terminated for
only 23% of the graphs. In all other cases it either reached
the memory limit or a timeout occurred. Yet, the conjugacy
class search method was also able to outperform the full
quotient method for a few domains (e.g. barman).

Other than the success rate, we also investigated the run-
time and size of found descriptive quotients. The results for
these metrics is recorded in figs. 2 and 3 respectively. In
these figures, we compare the powerset heuristic against the
conjugacy class search as well as the two heuristics against
each other. For the runtime on the one hand, we specifically
marked the timeout of 30 minutes and set this value also for
earlier terminations due to the memory limit. As the full quo-
tient heuristic is checked as part of the other search methods,
it takes at least as much time as these and is thus not included

3This corresponds to the lrz.xlarge flavor of virtual machines
as described here: https://doku.lrz.de/display/
PUBLIC/Compute+Cloud

in our results. On the other hand, the quotient sizes are mea-
sured as the ratio to the original graph’s size. As a result, all
not terminating experiments are given the ratio of 1 as the
only found descriptive quotient can be the original graph it-
self. Similar to the runtime plot, we omitted the full quotient
method again, as the so found quotients have the lowest size
ratio by default, because they utilize all symmetries.

We conclude based on the plotted data that the conjugacy
class search always takes longer and results on average in
larger quotients than our heuristics. Of these heuristics, the
core recoloring takes on average more time than the pow-
erset search, yet finds significantly smaller quotients. Thus,
both heuristics are advantageous over the conjugacy class
search and also reasonable fallback methods for graphs with
non-descriptive full quotients.

Other Theoretical Aspects
Apart from the search procedures, we also strive to provide
an overview of the computational complexity of DQG. We
first note a more general result:

Lemma 3 (Abdulaziz, Norrish, and Gretton 2015). It is
NP-complete to decide whether a consistent transversal ex-
ists for a given vertex partition.

Due to the additional requirement of the partition consist-
ing of automorphism orbits, we can not directly transfer this
result to DQG, though. We thus first start with the following
theorem:

Theorem 2. The descriptive quotient graph problem DQG
lies in NP.

Proof. The certificate for the graphG comprises both a min-
imal generating set of a subgroup Γ ≤ A(G) and a fitting
consistent transversal t for the quotient G/GΓ.

To check whether the generated group is actually a sub-
group of A(G), it is sufficient to check whether all genera-
tors are automorphisms. To in turn check whether a permu-
tation ρ is an automorphism, it suffices to check the graph
isomorphism problem GI for the input (G,G) with the cer-
tificate ρ. This is possible in deterministic polynomial-time
as GI is known to lie in NP.

It is also possible to compute the quotient G/GΓ induced
by Γ in polynomial time. For this, at first the subgroup ac-
tion’s orbits are computed inductively. The algorithm for this
starts with a discrete partition and then stepwise unifies or-
bits if a generator permutes vertices between them. By run-
ning this procedure iteratively for all permutations in the
generating set, we get the induced partition and can add the
corresponding edges to obtain the whole quotient in polyno-
mial time.

In addition, it is also possible to check whether this quo-
tient is descriptive by using the transversal as a certificate
and running the polynomial-time decision procedure which
we get from Lemma 3.

To conclude, the certificate comprising a generating set
and a consistent transversal has both polynomial size (cf.
Lemma 5) and can be checked in deterministic polynomial

https://doku.lrz.de/display/PUBLIC/Compute+Cloud
https://doku.lrz.de/display/PUBLIC/Compute+Cloud


Domain Number of Graphs Full Quotient Conjugacy Class Search Powerset Search Core Recoloring
All Graphs 3325 2743 765 2939 2951

IPC5 208 143 47 177 175
IPC8 434 201 90 227 225

gripper 22 21 5 21 21
logistics_Track 397 312 317 318 321

seq 653 206 107 211 213
tseq 90 34 46 50 54

unsolve 939 348 111 453 459
Test2 40 20 6 20 21

newopen 1440 1440 14 1440 1440
zeno 40 18 22 22 22

hiking 40 40 0 40 40
pipesworld 46 14 14 44 42

storage 30 0 1 3 3
barman 62 18 43 46 49

Figure 1: Number of descriptive quotients found per domain and search method
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Figure 2: Comparison of search runtimes

time. It can also be noted that a graph has a non-trivial sub-
group inducing a descriptive quotient iff there exists such a
certificate by definition.

Thus, we have shown that DQG ∈ NP.

Based on the decision problem 1, it is possible to define
the following optimization problem:

Problem 2 (DQG-Opt). Given a graph G and a metricM,
find Γ ≤ A(G) that induces an optimal descriptive quotient
G/GΓ with respect to M. This means that M(G/GΓ) =

max{M(G/GΓ′
) | Γ′ ≤ A(G), G/GΓ′

descriptive}.
This problem is parameterized by a metric to categorize

different descriptive quotients and which we define to be
maximal for an optimal quotient. Following this definition,
is is also possible to define approximation algorithms based
on the aforementioned search procedures.

As mentioned before, it is always possible to find an op-
timal descriptive quotient by including the trivial one into
the search space. Yet, this restricts the used metrics to those
that do not become maximal for the trivial group. Otherwise,
the metric would be of no use as the optimal quotient graph
would be the same as the original one.

Summary, Future and Related Work
In this report we described the results of our research on de-
scriptive quotients and their use cases. We confirmed that
even simple heuristics such as searching in the powerset of
generators can be used to improve applications of descrip-
tive quotients. In addition, we determined several properties
of descriptiveness which allow for more advanced search ap-
proaches. We expect, for example, to find more heuristics to
remove non-descriptive cores without destroying all symme-
tries in the process.
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On another note, it might be possible to combine the
construction of A(G) by nauty/Traces with a search pro-
cedure for descriptive quotients as the Schreier-Sims algo-
rithm, which forms the basis of the graph symmetry analy-
sis, utilizes similar results from group theory as our conju-
gacy class search method. A related idea can also be found
in the GRAPE package (Soicher 2021) for the GAP system
(GAP). This package combines reasoning about graphs with
group computations, yet does not support descriptive quo-
tient graphs as of the time of this writing.

Whereas we focused on graph automorphisms, Horčík et
al. employed the more general endomorphisms to reduce la-
beled transition systems for planning problems in their re-
cent work (Horčík and Fǐser 2021). Their basic idea was to
remove redundant actions with higher costs. Similar to our
SAT encoding approach, they encoded the endomorphism
properties into a constraint satisfaction problem. Yet, as the
endomorphism exploits planning actions and their costs, this
approach is not trivially liftable to general graphs and thus
resembles more the work of Abdulaziz et al. in (Abdulaziz,
Norrish, and Gretton 2015) than our research scope.

To summarize, there are still several open questions and
improved approaches left to investigate based on our find-
ings. Especially the correlation of graph symmetry and
group properties seems to allow for promising results in the
future.
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Appendices
Proofs

We only consider finite graphs in the following as these are
the only relevant with regard to computational complexity.

Lemma 4. Every minimally generated group Γ has a min-
imal generating set gen(Γ) := {γ1, . . . , γm} of cardinality
|gen(Γ)| = m ≤ ld (|Γ|).

The following proof for Lemma 4 is based on a proof idea
from (Geyer 2012).

Proof. We do an induction proof on the group generated by
generators γ1 to γi (i.e. 〈γ1, . . . , γi〉). We also note that be-
cause gen(Γ) is minimal all generators are not the identity
permutation ε.

• Base case i = 1:
We need to show |〈γ1〉| ≥ 21 = 2. Due to γ1 6= ε the
generated group 〈γ1〉 needs to contain at least ε and γ1

and has thus order of at least 2.
• Induction step:

We assume that for a fixed but arbitrary i, |〈γ1, . . . , γi〉| ≥
2i holds. We then show that |〈γ1, . . . , γi+1〉| ≥ 2i+1

also holds. We first note that due to the minimality of
the generating set, no generator can be obtained by com-
posing any string of other generators and their inverses.
As a result, it holds that γi+1 /∈ 〈γ1, . . . , γi〉. It fol-
lows that the left cosets ε〈γ1, . . . , γi〉 = 〈γ1, . . . , γi〉
and γi+1〈γ1, . . . , γi〉 are not identical as only the sec-
ond one contains γi+1. Because both sets are cosets of
〈γ1, . . . , γi〉, they thus must be disjunct and also of the
same size as 〈γ1, . . . , γi〉. Therefore, we can follow that
〈γ1, . . . , γi+1〉 contains both cosets and has thus order of
at least 2 · |〈γ1, . . . , γi〉| which by induction hypothesis
results in |〈γ1, . . . , γi+1〉| ≥ 2 · 2i = 2i+1.

As a result, |〈γ1, . . . , γm〉| = |Γ| ≥ 2m and m ≤ ld (|Γ|).

With this result, we can also proof an upper bound for the
size of minimal generating sets of subgroups of the automor-
phism group:

Lemma 5. Every subgroup Γ of the automorphism group
A(G) has a generating set with order polynomial in the size
of the graph n := |VG|.

Proof. Every subgroup Γ of the automorphism group A(G)
is finite and is thus also finitely generated. As a consequence,
Γ is minimally generated by a finite minimal generating set.

We can thus pick an arbitrary but fixed minimal generat-
ing set for Γ comprising m generators. Due to Lemma 4, we
know that m ≤ ld (|Γ|).

In the worst case, Γ can be as large as the whole sym-
metric group Sn, which has order n!. We can thus find the
following bound for m:

m ≤ ld (|Γ|) ≤ ld(n!) = ld
(
Π

n

i=1i
)

=

=

n∑
i=1

ld(i) =
n(n− 1)

2
≤ n2

Thus, Γ has a minimal generating set of order polynomial in
the graph size n.

Lemma 6. For every satisfying assignment to formula (5),
for every two adjacent orbits o1 and o2, all true-encoded
vertices in o1 are adjacent to all true-encoded vertices in o2

and vice versa.

Proof. Without loss of generality, we assume that the ver-
tex encodings Jvo1

1 K and Jvo1
2 K are assigned to true and only

v2 is adjacent to v3 with Jvo2
3 K assigned to true. Then the

consistency constraints contains a clause ¬Jvo1
1 K ∨ J¬vo2

3 K
which prevents that both Jvo1

1 K and Jvo2
3 K can be assigned

true. This is a contradiction to our assumption and as a re-
sult, all true-encoded vertices in o1 need to be adjacent to all
true-encoded vertices in o2.

Example Graphs
The following graphs depict non-descriptive subgraphs ob-
tained from planning problems. Vertices of the same color
form an orbit in the corresponding quotient graph. For all
graphs exists no consistent transversal that would pick one
vertex of each color (i.e. each orbit) and keep all inter-color
edges intact.

All of the following non-descriptive subgraphs were taken
from the planning problems used for our experiments.

Figure 4: Nondescriptive subgraph for planning problem
IPC5_storage_p03.
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Figure 5: Nondescriptive subgraph for planning problem IPC8_opt_Barman_p435.1.
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