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Abstract

This thesis describes an approach to extend the Monadification and Memoization
framework for the theorem prover Isabelle. This framework allows for introducing
memoization into a program by embedding it into a specific monad. In addition,
an automatic correctness proof for the monadified function is performed. However,
the monadification method introduces a rather large structural overhead and only
works for its own memoization monad. The goal of our extension approach was,
therefore, to reduce the overhead and to allow for more monads. We developed a
new monadification procedure that meets both objectives. From this, we derived a
proof-of-concept reference implementation that proved to fulfill all new requirements
while keeping the framework’s original functionalities. The usability of our approach
was also examined for a real-world example, the Bellman-Ford algorithm. Despite
this, there are limitations of our method as well. For instance, the generalization of
usable monads comes with an increased implementation overhead for the user, as they
have to handle monad-specific lemmata and effects. We nevertheless conclude that
our approach is successful for a general setting and can be used to extend the existing
framework.

Diese Arbeit beschreibt einen Ansatz, um das Monadifikations und Memoisierungs Rah-
menwerk für den Theorembeweiser Isabelle zu erweitern. Dieses Rahmenwerk erlaubt
es, Memoisierung in ein Programm einzubringen, indem dieses in eine spezielle Mon-
ade eingebettet wird. Zusätzlich wird ein automatischer Beweis über Korrektheit dieser
Monadifikation geführt. Jedoch bringt diese Monadifikations-Methode eine merklichen
Strukturoverhead und funktioniert nur für die eigene Memoisierungsmonade. Das Ziel
unserer Erweiterung war dementsprechend, den Overhead zu reduzieren und mehr
Monaden zu unterstützen. Wir entwickelten eine neue Monadifizierungsprozedur,
welche diese beiden Anforderungen erfüllt. Davon ausgehend wurde eine Referen-
zimplementierung als Konzeptnachweis erstellt, welche zum einen die genannten
Auflagen einhält und zum anderen die ursprüngliche Funktionalität des Rahmenwerk
weiterhin aufrecht hält. Die Brauchbarkeit des Ansatzes wurde außerdem an einem
Beispiel aus der echten Welt, dem Bellman-Ford Algorithmus, gezeigt. Trotz dieser
Errungenschaften weist unsere Methode auch Schwächen auf. Beispielsweise bringt die
Erweiterung der nutzbaren Monaden einen größeren Implementierungsaufwand für
die Nutzer mit sich, da diese monaden-spezifische Lemmata und Effekte handhaben
müssen. Wir kommen trotzdem zu dem Schluss, dass unser Ansatz im Allgemeinen
erfolgreich und damit für eine Erweiterung des Rahmenwerks geeignet ist.
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1. Introduction

As software influences our daily lives more and more, bugs become potentially more
critical and serious, too. While thorough testing and thoughtful software design
decreases the number of bugs and other faults, formal verification is the best way to
ensure complete correctness. Formal verification is often done with verification tools,
of which the proof assistants turned out to be the most usable. Most proof assistants,
like Isabelle, use purely functional programming languages for formalization, as they
are structurally suited for simple proving techniques and have no side effects that
could affect the proofs. The only way purely functional programming can make use
of side-effect-like functionalities is by monads. As a result, monads have become an
important concept to the functional programming paradigm. However, they are often
rather complicated to introduce into a program. The programmer has to choose which
monadic effects they want to use and then introduce them in all parts of the program,
where they are necessary. Afterwards, the programmer has to adapt all otherwise pure
functions that make use of the monadic effects. This requires a lot of knowledge about
both the program and the used monad and takes a lot of work for bigger software
systems. As a result, a method for automatically monadifying a pure program would
be of great help. If this method would in addition provide its own correctness proofs,
it could be used trivially for optimizing verified code. A tool achieving this is the
Monadification and Memoization [24] framework for Isabelle/HOL. It allows for automatic
embedding of functions in a memoization monad and, in addition, proves this step to
be correct.

This thesis describes an approach to extend this tool. Our goal is to reduce the
introduced monadic overhead while also enabling the insertion of generic monadic
effects in a still verified way. Therefore, we developed a new monadification procedure
and implemented it as a proof-of-concept. We then demonstrated, how our method can
be used instead of the old framework and how it influences the correctness proofs.

This thesis begins by explaining all important theoretical backgrounds that are
necessary to understand the details of our approach. This is done in Chapter 2 and
involves short introductions to the Isabelle system, the monad pattern, parametricity
reasoning and dynamic programming. Following these introductions, we give a short
overview over related work and the research we built upon in Chapter 3. Starting
the main part of our thesis, we introduce both the old and the new monadification
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1. Introduction

procedures in detail in Chapter 4. We reason not only about the monadification rules,
but also about how monadic effects and other special cases are handled. Subsequently,
we explain how the monadified functions are proven to be correct in Chapter 5. We
show how the proof works in detail and what parts have to be changed to adapt the
proof method to our new procedure. After this, we compare our proposed method to
the old one in detail and conclude with a real-world example featuring the Bellman-
Ford algorithm in Chapter 6. We demonstrate how the monadification procedure
changes the program and how this step is then proven to be correct. In the last part
of this thesis, we summarize our findings and discuss our work. In Chapter 7, we
recapitulate the improvements achieved by our approach and balance them with the
associated limitations and shortcomings. We then summarize our work and discuss
possible future work in Chapter 8.
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2. Theory

The following sections introduce the most relevant theoretical backgrounds this thesis
builds upon. At first, the Isabelle system is described in Section 2.1, as the Monadification
and Memoization framework is implemented in part in Isabelle/HOL and in part in
Isabelle/ML, which are both Isabelle subsystems. Afterwards the concept of monads is
introduced in Section 2.2 as foundation for the tool. Next, the theoretical background
of the automated proof mechanism is explained in Section 2.3. At last, the frameworks
original use case is depicted in Section 2.4.

2.1. Isabelle/HOL

The generic theorem prover Isabelle [17, 18] is a LCF-style [7] theorem prover and pro-
vides an intuitionistic fragment of higher-order logic, called meta-logic or Isabelle/Pure,
on which (nearly) arbitrary user-defined logic systems can be built. Following the
LCF-style, the meta-logic is implemented as a small trusted kernel in the meta lan-
guage (Standard) ML1. On top of this kernel, a number of predefined object logics
are provided, of which Isabelle/HOL [15] is the most frequently used. Isabelle/HOL
implements the common higher-order logic (HOL, cf. [6] for the theorem proving
environment of the same name) that can be defined as a combination of functional
programming and logic reasoning.

Isabelle/HOL provides both automatic and interactive proving capabilities and comes
with a number of different proof methods by default. Though, we mainly use one of
these methods that comprises natural deduction and backtracking. All proof methods
are composed of several proof tactics at the meta-logic level. These tactics are ML
functions working directly on kernel data types and are therefore complex and hard to
handle. As a result, the Isar language, short for Intelligible Semi-Automated Reasoning
[23], was introduced as an intuitive way of structuring proofs and making them
more readable for humans. Isar, as well as the whole Isabelle system, are thoroughly
documented for users on the Isabelle webpage2, whereas Isabelle/ML is described in
detail for Isabelle developers in the Isabelle Cookbook [20].

1The whole implementation is also referred to as Isabelle/ML and is based on Poly/ML (https:
//polyml.org/).

2https://isabelle.in.tum.de/
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2. Theory

Aside from the proof mechanisms, Isabelle/HOL also provides a purely functional
programming language. This programming language is similar to the underlying meta
language and is centered around well-defined, higher-order functions. The standard
way of defining a function in Iabelle/HOL is via the fun command. This command al-
lows for total and (mutually) recursive functions, which may also use pattern-matching
on their arguments, and automatically generates not only the corresponding simpli-
fication and induction rules, but also determines and proves the termination order
of these functions. If a function is not recursive or does not use pattern-matching on
its input, it can also be implemented with the definition command. This command
introduces the function as an abbreviation for its definition and generates a rule to
unfold this definition (denoted by the suffix _def ). In contrast to fun, definition does
not generate an induction scheme or find the termination order. This difference is of
minor importance for our work later on.

Regardless of their definition method, all functions used in this thesis are defined in
Isabelle/HOL’s type system, which is derived from the simply-typed lambda calculus
by Church [2], as HOL is directly based on that. The notation x : : t denotes thereby
that value x is of type t. As Isabelle/HOL can infer most types correctly, this notation
is rarely required in the source code and only used in this thesis to help the reader
understand the types. Isabelle/HOL comes with a broad variety of default types like int
for integers or bool for boolean values. These can be combined to form product types as
tuples ′a× ′b or lists ′a list, where ′a and ′b are polymorphic type parameters that can
be instantiated by any type. Function types are written as ′a→ ′b3 for a function with
argument type ′a and result type ′b. As Isabelle/HOL works with curried functions,
any function with more than one argument has a type ′a0 → ′a2 → · · · → ′an → ′b
where an application to all but the last argument of type ′an returns a function again.
More complex data types can be defined with the datatype command, which allows
for polymorphic sum types with constructors and built-in destructor functions. The list
data type can, for example, be defined as

datatype ′a list = Cons (head : ′a) (tail : ′a list) | Nil

with the type constructors Cons and Nil as well as the destructors head and tail. In
addition, types can implement type classes. Type classes in Isabelle/HOL are similar
to Haskell’s early type classes and define both functions and properties encoded in
theorems that a type instance of this class has to provide. However, unlike newer
Haskell versions, Isabelle/HOL does not support polymorphic type classes. Other than
that, Isabelle/HOL has the concept of locales, which denote a specific environment

3Normally, the function type in Isabelle/HOL is built with⇒, but for readability reasons→ is used here
instead.
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2. Theory

with functions, constants and lemmata that may depend on polymorphic parameters.
These parameters can be terms and types with associated assumptions encoded in
theorems. Although locales are more powerful than type classes, they can not be used
to work with polymorphic types that require a type parameter themselves (e.g. ′a ′b for
a type ′b with one parameter ′a). These limitations are the reason for our approach in
Chapter 5.

2.2. Monads

A monad is a concept from category theory4 first formally introduced to computer
science by Eugenio Moggi [14]. Nowadays, monads are a crucial aspect of (purely)
functional programming, as they can be used to structure complex computations and
data flow and even to mimic side effects in a safe and pure fashion. Monads can be
thought of as representations of computation, i.e. computations that are built up in a
dynamic way and can be handled like data before they are executed. Hence, they can
encode generic boilerplate code and lift programming to a higher level, which is the
reason why monads have become such an important design pattern. Especially the
programming language Haskell makes heavy use of monads [16], at least since Wadler
examined the concept in [21].

As a result, a slightly adjusted version of Haskell’s monad type class shall be used to
define the structure of a monad in the following. In general, a monad is a polymorphic
data type that expects one type parameter denoted as ′a M. It needs a function to build
up a monad value from a value x : : ′a, which is called return and is expressed as the
surrounding operator (〈. . . 〉) : : ′a→ ′a M from here on, resulting in the simple monad
〈x〉. Monads can be composed by the bind function denoted by the infix operator
(�=) : : ′a M→ (′a→ ′b M)→ ′b M. It unwraps a value from a monad and forwards
it into the given function, which returns a monadic value itself. By this, the flow of
computation can be specified. To be more specific, the bind operator allows for a special
notation emphasizing the control flow called the do-notation. Within a do block a term
x ← m is equal to m �= (λx. f ) where f is the next computation step. A statement
without ← is equal to m �= (λ_. f ) and discards the embedded value. The last
value of the do block has to be monadic again. A simple example would look like the

4Wadler calls category theory an "arcana" and an "abstruse theory" [21] not necessary to understand
monads in computer science. Thus, we omit a detailed description of the mathematical counterpart.

6



2. Theory

following, where the do block on the right works the same as the term on the left:

do {
a �= (λx. x ← a;

b �= (λy. y← b;

log ”a+b” �= (λ_. log ”a+b”;

〈x + y〉))) 〈x + y〉
}

The log constant denotes a function that adds a string to a writer monad and, thus, to
the programs log.

Both the return and the bind operators have to comply with certain rules to allow for
a type to be a monad. These rules are called the monad laws and can be described as
follows:

1. m �= return = m

2. 〈x〉 �= f = f x

3. m �= (λx. f x �= g) = (m �= f ) �= g

To sum up, return has to be an identity for bind, which also needs to be associative.
Especially the second law can be used often to simplify monadic terms and is of
importance for later sections.

The writer monad used above is one example of a simple, yet useful monad. It works
like an append-only list and is often used to build a log or to document certain events. It
could also be used to implement debugging capabilities like a stack trace. The opposite
of the writer monad is the reader monad, which encapsulates a set of read-only values in
a similar fashion as global constants in imperative programming. Next, the state monad
combines both ideas and holds a readable and writable state memory. It can be used to
implement memoization, whereby the state holds all former results that may be used
for future computations. This kind of monad is the basis for Section 4.1 and will be
investigated further there. Even simpler types can form a monad. Examples for this are
the list type or the option5 type. Both monads are special in that they have two type
constructors, of which one encodes an empty value. Whereas the list monad uses the
standard Cons and Nil constructors, option is built around Some and None, which either
wrap some value or represent none. The most important monad in Haskell is probably
the IO monad, which is used to abstract all interactions with the operating system and
the file system and, therefore, encapsulates many functionalities that have side effects.

5In Haskell this type is called Maybe.
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All of the monads explained above can be used to implement one specific functionality
each. To combine these functionalities, monad transformers have been invented. These
special structures allow for monads to be embedded in other monads while asserting
direct access to each of them. Due to this property, most real-world software systems
using monads are built around monad transformers rather than simple monads [16].

2.3. Relational Parametricity Reasoning

Relational parametricity is a concept based on Reynolds’ abstraction theorem [19] that
describes relational properties of types in the polymorphic lambda calculus also known
as System F. The theorem states that terms evaluated in related environments are bound
to yield related values. The basic idea to formalizing this intuition is to see a type as a
binary relation on the set of its values. Constant types relate their values only reflexively,
i.e. the type relation is always the identity relation, which can be implemented as
simple equality for most types. This case shows the discrepancy between mathematical
relations and their standard implementations as relator functions returning boolean
values. We use both notations interchangeably in this thesis. Function types relate their
values with the function relator 99K, which describes that related arguments should
induce related results:

R 99K S = λ f g. ∀x y. R x y −→ S ( f x) (g y)

Here, R : : ′a→ ′a→ bool and S : : ′b→ ′b→ bool describe type relations for ′a and ′b
with the functions f : : ′a→ ′b and g : : ′a→ ′b respectively6. Other type relations are
defined in a similar fashion. On top of these relations, Wadler’s parametricity theorem
[22] deals with relating a term with itself under its corresponding type relation. If this
theorem is applied to parametric types, "free theorems" [22] can be derived by relating
two arbitrary instances of the type for different parameters:

(t, t) ∈ ∀X. T ⇒ ∀A ::′ a→ ′b→ bool. (ta, tb) ∈ TA

In this theorem the term t : : ′x T is of the polymorphic type T with type relation T
that can be instantiated with a type parameter X. The instantiation is then formulated
for two types ′a and ′b that can be related by A that also instantiates T . All theorems
derived from this approach are then valid for all terms of the used type. This finding
relates to Reynolds’ theorem, as the type is the environment and the theorem relates
the values. The simplest theorem derived in this way is that all functions f : : ′x → ′x

6The relations can be defined on different type pairs in general. This property is important for our later
use of the function relator but not for pure parametricity.
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2. Theory

for the polymorphic type ′x can only (modulo side effects) be the identity function.
This result can be obtained by the following chain of equations. In the first step, the
polymorphism of f is lifted from the type relation level to a general relation level.

f : : ′x → ′x ⇒ ( f , f ) ∈ ∀X. X 99K X

⇒ ∀A : : ′a→ ′b→ bool. ( fa, fb) ∈ A 99K A

⇒ ∀A : : ′a→ ′b→ bool. ∀x y. A x y −→ A ( fa x) ( fb y)

To make reasoning easier and more clear at this point, the relation descriptor A is
exchanged for the function A : : ′a → ′b that maps all values x of type ′a to a value y
of type ′b if and only if A x y. Although A can not map all pairs of A in general, this
specialization does not change the validity of the theorem that is derived below.

⇒ ∀A : : ′a→ ′b. ∀x y. A x = y −→ A ( fa x) = ( fb y)

⇒ ∀A : : ′a→ ′b. ∀x. A( fa x) = fb(A x)

⇒ ∀A : : ′a→ ′b. A ◦ fa = fb ◦ A

As fa and fb denote the same function f instantiated with different types and as the
last equation has to hold for any A, f has to be the polymorphic identity function
I : : ′x → ′x, where I x = x.

Another application of type relations is parametricity reasoning. This kind of reason-
ing aims for relating two terms of different types by finding a common polymorphic
type relation. The important difference between the method of finding free theorems
and reasoning with parametricity is that the former reasons about every possible im-
plementation on the basis of the type, whereas the latter argues about two specific
implementations. Parametricity reasoning can for instance be used to formulate corre-
spondence theorems and, as a result, is used primarily in Chapter 5. A simple example
correspondence theorem for two functions is

((=) 99K (λx y. x = y + 1)) ((+) 1) I

where I is the polymorphic identity function and the correspondence of the two
functions is denoted in their relation. In this case both functions work on the same
types and, therefore, equality is possible as the first relation. More complex examples
may require more complex relations arguing about different types. Especially monadic
types can prove to be rather difficult to relate to. Relations between two monads were
investigated by Karbyshev [9], whereas for our goal a non-monadic value has to be
related to a monadic one. The necessary approach to achieve this is described in detail
in Section 5.1.

9



2. Theory

2.4. Dynamic Programming and Memoization

Dynamic programming denotes both a mathematical optimization method as well as a
programming pattern. Whereas the former was invented by Bellman and described
in [1], the latter was developed by applying the mathematical approach to computer
programming. In the following, we will only concentrate on the method for computer
science.

Dynamic programming aims for solving optimization problems, i.e. problems with
more than one solution, of which one is supposed to be the best or even optimal.
This problem class includes the single-source shortest path problem on graphs or the
knapsack problem, among others. Of these problems only a specific subset can be
solved by a dynamic programming approach; the problems need to have an optimal
substructure and overlapping sub-problems as defined by Cormen et al. in [3]. This
means that the problem can be, on the one hand, solved by solving sub-problems
first and that, on the other hand, some sub-problems depend on each other. These
requirements are for instance met by recursive problems with more than one recursive
call per level such as the fibonacci sequence. The solving pattern is then based on a
clever approach to computing solutions to all necessary sub-problems while exploiting
the dependencies among them to decrease the amount of necessary computations.

One method for implementing dynamic programming is memoization. Memoization
is a special form of caching that was first introduced by Michie in [13]. It works on
function application results, which are stored for future use. For this, a memoized
wrapper function =m with an associated memory is introduced for a function f : : ′a→
′b. Every call to f is then wrapped by =m by default. If the call arguments given to
f are not in the memory, f is executed and the result is stored in the memory with
the arguments as key. Otherwise, there already exists an entry in the memory indexed
by these arguments and the corresponding result can be returned directly from the
memory. As memoization introduces at least a constant amount of runtime overhead
and, in the worst case, linearly growing memory consumption, it should only be used
for expensive functions that are called often with a similar set of arguments. In general,
this property is given for a dynamic programming approach. Other fields of application
for memoization include parsers, especially top-down parsers and parser combinators.
Memoized results can speed up their computations drastically, as these parsers may
have to check an exponential number of possible parse trees for a given context free
grammar. The gain achieved by this measure is, for instance, essential for parsing
natural languages with parser combinators, an approach researched by Frost et al. [5].
The benefits of parser combinators harmonize well with the requirements enforced by
natural languages, whereas the combinator’s shortcomings are significantly improved
by the memoization.
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3. Related Work

Although monads are a rather old concept, the term "monadification" was first defined
by Erwig and Ren in [4]. In their work, they introduce a monadification procedure
based on context-dependent, syntactic rewriting. The authors claim that their automatic
tool has several advantages over constructing monadic programs by hand. Besides
being a generic tool that is reusable and versatile by design, it is also said to be more
efficient and reliable than a human doing the transformation by hand. Erwig and Ren
also specify two properties to describe the correctness of any monadification procedure:
soundness and completeness. Together, they ensure that any monadified term describes
the same behaviour as the original term wrapped in a return statement. As a result of
this limiting definition, the authors stated that a sound monadification could not be
found for all functions. Even though this conclusion applies to the presented approach,
the given explanation does not hold for more modern monadification procedures in
general. Another shortcoming of the correctness definition is the missing incorporation
of monadic effects that may differ heavily between the monadified and the wrapped
version of a code snippet. Despite this, the authors introduced a functionality to specify
the order of monadification, as this detail has great influence on the application of
monadic effects. Furthermore, the framework allows for context-dependent rewriting
featuring its own formal language to describe this process in detail. Thus, the paper
greatly influenced the research in this direction afterwards.

One result of this research is the Monadification and Memoization [24] framework
developed by Wimmer et al., which is described in [25]. It aims at improving dynamic
programming in Isabelle/HOL by automatically introducing memoization into pure
programs. This effect is thereby implemented with a state monad, which is inserted
automatically by a monadification procedure. Consequently, this transformation process
is also formally verified by the tool. This property makes it a very powerful framework.
On another note, this thesis describes an approach to extend said framework and
is, consequently, directly based on it. As a result, the Monadification and Memoization
framework will be examined in detail in Section 4.1 and Section 5.1. The framework
includes also an interface for Imperative/HOL [11] and allows for the implementation
of memoization with the associated heap monad. Moreover, the framework allows for
bottom-up computation based on iterators defining the evaluation order of the monadic
terms. Both features are not further investigated in this thesis, as they are not directly
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related to the topics we worked on.
On another note, our main idea for the extension is based on the work by Peter

Lammich, which is used internally for the LLVM code generator described in [10]. The
corresponding tool implements a lightweight monadification procedure, which had
to be reverse engineered from its source code due to lack of formalization or concrete
documentation. As a result, the method described in Section 4.2 produces similar
output as Lammich’s, yet has a different structure and more functions built-in.

A more recent paper by Lochbihler, [12], describes a monomorphic approach to
monads in Isabelle. The introduced tool overcomes Isabelle/HOL’s limitations in poly-
morphic data types, which hinder the development of a proper monad type class. The
author shifted his focus therefor from value polymorphism to effect polymorphism, i.e.
from a fixed monad with a polymorphic type parameter to a polymorphic monad with
a fixed type parameter. This modification allows not only for powerful monad trans-
formers (a rather unexamined topic in the context of automatic monadification), but
also for reasoning about these monads with instance relations. These instance relations
make it, among other things, possible to prove properties of complex monadic programs
by exchanging the used monad with a simpler one. Nevertheless, the monomorphic ap-
proach does not quite meet the necessary requirements to be introduced into programs
automatically by our tool. Due to our goal of being an extension to the Monadification
and Memoization framework, our work has to keep the value polymorphic state monad
and only add to this base. An approach with effect polymorphism is not capable of
this and, hence, cannot be a part of our desired extension.
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Part II.

Verified Monadification and
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4. Monadification

The main objective of the Monadification and Memoization framework is to introduce
memoization by the means of monadification with a state monad [25]. In contrast, our
new extension approach aims at improving this method by allowing for generic monads
and focuses more on the monadification procedure itself. Despite these differences,
both versions follow the same basic principle; they take a pure (or at most partly
monadic) function and wrap all function branches in their respective monadification
procedures. These are introduced in detail in Section 4.1 and Section 4.2 respectively.

4.1. Current Monadification Procedure

The current monadification procedure is based on a call-by-value monadification style
originating from [8]. The underlying monad is Isabelle/HOL’s standard state monad1

with a memory type ′m and a result type ′a:

datatype (′m, ′a) state = State (run_state : ′m→ ′a × ′m)

Thus, the monad encapsulates a function that takes a memory, returns a new memory
and a result and can be accessed by the run_state destructor. The corresponding return
and bind operators are defined as follows:

〈a〉 = State (λM. (a, M))

s �= f = State (λM. case run_state s M of (v, M′)⇒ run_state ( f v) M′)

This definition of the bind combinator allows for the state to be threaded through the
whole program.

4.1.1. Monadification with the State Monad

Building on top of this monad, the monadification procedure opts for similarity to the
unmonadified version by using a special application-like operator called the "lifted
function application operator" (infix as .) [25]. It is defined as:

fm . xm = fm �= (λ f . xm �= f )

1Located in the State_Monad theory from the Isabelle/HOL standard library.
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4. Monadification

To allow for this operator to be usable, the types of the monadified functions and terms
are derived recursively by the following formalization based on [25]:

M(τ) := (′m, M′(τ)) state

M′(τ1 → τ2) := M′(τ1)→ M(τ2)

M′(τ1 ⊕ τ2) := M′(τ1)⊕M′(τ2) where ⊕ ∈ {+,×}
M′(τ) := τ otherwise

The corresponding monadification procedure generates two terms fm and f ′m for a
function f, of which only the first is of the described type, while the second is used
internally. The fm term is built as a monadified full η-expansion of the f ′m function.
The method to arrive at f ′m has then been formalized in [25] as a set of rewrite rules,
describing the core monadification operator (in descending order of priority):

e : : τ0 → τ1 → · · · → τn 2e ∩ dom Γ = ∅ ∀i. M′(τi) = τi

Γ ` e 〈λt0. 〈λ t1. · · · 〈λtn−1. e t0 t1 · · · tn−1〉 · · · 〉〉
Pure

Γ[x 7→ 〈x′m〉] ` t tm

Γ ` (λx : : τ. t) 〈λx′m : : M′(τ). tm〉
λ

Γ ` e em Γ ` x xm

Γ ` (e x) (em . xm)
App

g ∈ dom Γ

Γ ` g Γ(g)
Γ

Γ ` t1  η(t′1) . . . Γ ` tn  η(t′n)

Γ ` ∆ t1 . . . tn  〈∆ t′1 . . . t′n〉
Comb

Here, Γ is a mapping of terms to their corresponding monadified versions and holds
all already processed term pairs. Initially f 7→ fm and x 7→ 〈x′m〉 are the sole entries
in Γ for a given function branch f x = t. This is then monadified to f ′m x′m = tm while
Γ ` t tm describes that t is monadified to tm for the given Γ. The set 2e denotes the
set of subterms of e. The ∆ term stands for any branching expression with branches t1

to tn like if . . . then . . . else . . . or case . . . of . . . , whereas η(. . . ) eta-expands the
given term fully.

Accordingly, the monadification procedure is composed of both type and term
rewrite rules. The effect of these rules are described by applying them to the upto
function, which builds a list of consecutive integers between the given boundaries, in
the following example. The types before and after the monadification are

upto : : int→ int→ int list

uptom : : (′m, int→ (′m, int→ (′m, int list) state) state) state
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4. Monadification

whereas the function definitions are

upto l u = if (l ≤ u) then Cons l (upto (l + 1) u) else ([ ])

and

uptom = 〈λl. 〈λu. upto′m l u〉〉
upto′m l u = item . 〈l ≤ u〉 . (Consm . 〈l〉 . (uptom . 〈l + 1〉 . 〈u〉)) . 〈[ ]〉

item = 〈λa. 〈λb. 〈λc. 〈if a then b else c〉〉〉〉
Consm = 〈λx. 〈λxs. 〈Cons x xs〉〉〉

respectively. The subterms 〈l ≤ u〉 and 〈l + 1〉 are shown in a simplified version for
easier readability. This simplification is done in accordance with the second monad law.
Furthermore, the definitions of item and Consm are not generated by the monadification
procedure directly, as the Γ rule would replace the non-monadic function calls or the
Pure rule would not insert the innermost return.

4.1.2. Memoization with the State Monad

At this point, the generated terms carry only the given state with them without writing
to or reading from it. Thus, the monadic effects of reading and writing need to be
added to introduce memoization to the function. For this step, the monadified terms
are wrapped in another function retrieve_or_run, which implements this functionality
(cf. =m from Section 2.4). It is assumed that the memory ′m comes with the functions
lookup : : ′k → (′m, ′v option) state and update : : ′k → ′v → (′m, unit) state. The
memory’s standard lookup and update functions may need to be wrapped in the state
monad’s get and set methods to fit these types. Additionally, the functions have to
obey specific invariants to ensure memory consistency; a call to lookup must not add a
mapping to the memory, whereas a call to update must not add any mapping except the
one it was called with. If both functions comply with these conditions, the definition of
retrieve_or_run : : ′k→ ′v state→ ′v state can be given as:

retrieve_or_run x t = do { r ← lookup x;

case r of Some v⇒ 〈v〉
| None⇒ t �= (λv. update x v �= λ_. 〈v〉) }

The argument t is here meant to be the lazily evaluated function term, as the method
would otherwise follow the whole recursive branch without applying memoization.
Memoization with the heap monad works in the same way.
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4. Monadification

4.2. New Monadification Procedure

Our new monadification method aims at simplifying the monadified functions in terms
of operations as well as lifting the framework and its benefits to generic monads. Hence,
our approach does not work with a fixed monad, like the state monad, anymore but
rather with any monad M with exactly one type parameter ′a. The corresponding
return and bind functions have to be given. In general, every monad complying with
the monadic laws can be used with our new method.

4.2.1. New Monadification Principle

In contrast to the former procedure, the new one changes the type of functions only
marginally. It solely encapsulates the result type into the monad, resulting in, e.g.

map : : (′a→ ′b)→ ′a list→ ′b list

being altered to
mapµ : : (′a→ ′b)→ ′a list→ ′b list M

where the subscript µ marks results of our new method. Due to this difference, the
lifted function application operator (.) is not needed anymore. The monadification
procedure on terms also works quite differently, as described by the following rules for
the generic monad M where ↪→ denotes the new monadification procedure (ordered by
descending priority):

Γµ ` b[y/x] ↪→ b′

Γµ ` (λx. b) ↪→ (λx. b′[x/y])
Abs

Γµ ` f ↪→ f ′ Γµ ` x ↪→ x′ ϕ(x)

Γµ ` f $x ↪→ insert_operand( f ′, x′)
App_var_op

Γµ ` f ↪→ f ′ ¬ϕ(x) ∧ µ(x)

Γµ ` f $x ↪→ insert_operand( f ′, x)
App_monad_op

Γµ ` f ↪→ f ′ Γµ ` x ↪→ x′ ¬ϕ(x) ∧ ¬µ(x)

Γµ ` f $x ↪→ bind_operand( f ′, x′)
App_op

x ∈ dom Γµ

Γµ ` x ↪→ Γµ(x)
Pre_def

term_type(x) ∈ {Var, Free, Const, Bound}
Γµ ` x ↪→ x

Id
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4. Monadification

The above rules are then complemented by these auxiliary definitions:

ϕ(x) ≡ term_type(x) ∈ {Var, Free, Bound}
µ(x) ≡(x : : ′a M ∨ x : : ′a→ · · · → ′b M)

insert_operand(y �= (λtmp. f ), x) = y �= (λtmp. insert_operand( f , x))

insert_operand( f , x) = cond_ret(dest_ret( f ) x)

bind_operand(y �= (λtmp. f ), x) = y �= (λtmp. bind_operand( f , x))

bind_operand( f , x) = cond_ret(x) �= (λmp. cond_ret(dest_ret( f ) x)))

cond_ret(x) =

{
x if x : : ′a M

〈x〉 else

dest_ret(〈x〉) = x

dest_ret(x) = x

Every monadified top level term is afterwards also wrapped in a call to cond_ret. This
is necessary, because function branches consisting of only one top level term would
otherwise not be monadified at all. The environment Γµ is here, in fact, a different
one than in the old procedure. By default, the mapping initially holds only the entry
f 7→ fµ for a function f that should be monadified by the framework. The environment
also holds all predefined monadic functions and operators and can be expanded by
hand, which is a feature used for the label rewriting mechanism described below.
The function term_type returns the topmost constructor of the given term defined by
Isabelle/HOL’s internal term datatype2.

The monadification rules are each meant for specific cases. The Abs rule works on
abstractions and lifts the monadification process into the body. For this, the abstraction
variable is fixed for the monadification and later reestablished. This is necessary to keep
the abstraction variables of the different abstraction levels from being interchangeable.
Abstraction variables in Isabelle are implemented with de-Bruijn indices, which means
that they are integer indices pointing to a specific abstraction level surrounding their
occurrences. The numbering begins at 1 on the same level as the variable and increases
for every enclosing layer. As the monadification procedure works in a depth first

2This data type represents Isabelle/HOL terms. Its constructors are Var, Free, Bound, Abs, Const and $ for
applications. See, inter alia, [20].
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4. Monadification

manner, all abstraction variables that are reintroduced point automatically to the correct
level. Next, the App rules handle applications depending on different attributes of the
operand. If the operand is some kind of variable, as implied by ϕ, it does not need to
be monadified any further and can directly be inserted in the monadified function term.
Otherwise, the operands are distinguished according to whether they are monadic or
not as described by µ. Monadic operands do not have to be monadified any further and,
thus, can also be inserted directly. In the last case, the operand needs to be monadified
and afterwards bound to the function term. Other than that, the Pre_def rule exchanges
a term for a known monadified term from Γµ. Last but not least, the Id rule works on
all remaining terms and returns them unmodified.

For both the binding as well as the insertion of operands, auxiliary functions are
needed to work directly on the monadified term structure. The insert_operand function
recurses to the deepest level of bound operands and adds its parameter to the function
application there. As all already bound or inserted operands are applied before, the
current operand is added at the correct position. In addition, the operand is lifted
inside a return statement, if that is necessary to embed the function application. The
bind_operand function leaps into the term structure the same way as insert_operand does.
Though, it does not insert the operand in the deepest level, but instead introduces
a new binding and a new abstraction. As this step can potentially break the correct
abstraction variable indices, the same method as with the Abs rule is used. The correct
wrapping or unwrapping of terms in return statements is achieved by the cond_ret and
dest_ret functions respectively.

Due to the procedure working depth first, the first argument to a function application
is bound with the outermost bind. This strategy is meant to help with, inter alia, replay-
ing the termination proof later on in a similar way as the lifted function application
operator does.

In the following, the upto function from above will be used as an example to show
how our new method works:

uptoµ : : int→ int→ int list M

uptoµ l u =

〈l ≤ u〉 �= (λtmp. ((〈l + 1〉 �= (λtmpa. uptoµ tmpa u)) �= (λtmpa. 〈Cons l tmpa〉))

�= (λtmpa. 〈[ ]〉 �= (λtmpb. 〈if tmp then tmpa else tmpb〉)))

The monadified term has been slightly simplified for readability purposes as the term
〈l + 1〉 would otherwise be more verbose. Due to further simplifications obfuscating
the monadification procedure, when done in compliance with the monad laws, the
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4. Monadification

resulting term has not been changed any further. Although our method would allow
for rewriting according to the second monad law, this step is currently not supported
in the API, as the concrete effect on the proof tactics has not been investigated in full
detail yet. The only case, where it is already used without problems, is the App_var_op
rule.

4.2.2. Label Rewriting

Despite the missing simplification routine, our approach exhibits another important
rewriting feature as a core functionality. It is called the label rewriting mechanism and
works only on constants like Cons, map or simply 1. It is hidden in the Pre_def rule
and requires a mapping from constant term names to fitting term building instructions.
These instructions have to be given in the form of a function that takes the term to be
exchanged as an argument and returns the new term as a result. It was decided to use
functions, in order to give the user full control over the new term’s type by making
it possible to generate this information from the original term. Thus, the mechanism
implements the Γµ mapping described above and contains initially only the function
the framework currently works on. The other two core use cases for the label rewriting
feature are the introduction of monadified higher-order operators and monadic effects.
Both are described below.

4.2.3. Handling Higher-Order Monadic Combinators

Since our new monadification procedure changes only the body type of a function
but not the expected argument types, it is necessary to handle higher-order functions
differently in specific cases. These cases occur, if at least one function argument is
monadified by the procedure, which can lead to a type problem. Let the definition
of a function example : : ′a → ′b contain the subterm map example l : : ′b list with an
arbitrary list l : : ′a list and, therefore, recurse indirectly through the map function.
Then the monadified function exampleµ : : ′a → ′b M would contain the subterm
map exampleµ l : : ′b M list. If the value of this term is used instead of a value of the
expected type ′b list, a type error would occur.

Our solution to this problem is a special auxiliary monadification procedure for
handling higher-order operators. It runs our normal monadification procedure with
an extended Γµ comprised of the new monadified definition of the operator with the
required type and replacement values for the monadified arguments. This method then
generates the corresponding higher-order monadic operator, which is used inside the
normal monadification procedure. The map function serves as a good example for this
method, as it is a widely used and easily understood higher-order operator. As the map
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function takes only one function argument, the type of the monadic combinator has to
be

mapµ : : (′a→ ′b M)→ ′a list→ ′b list M

(note the superscript µ instead of a subscript to distinguish between both new proce-
dures). As the base case does not depend on the given function, it can be monadified
directly as mapµ fµ [ ] = 〈[ ]〉. For the non-empty list case map f (Cons x xs) =

Cons ( f x) (map f xs) the argument f is labeled to be exchanged for a monadic version
in Γµ as:

f : : ′a→ ′b 7→ fµ : : ′a→ ′b M

Given this Γµ mapping, the monadification procedure can be illustrated as a step-by-step
term rewriting:

mapµ fµ (Cons x xs)⇒ Cons ( fµ x) (mapµ fµ xs)

⇒ (mapµ fµ xs) �= (λtmp. Cons ( fµ x) tmp)

⇒ ( fµ x) �= (λtmp. (mapµ fµ xs) �= (λtmpa. Cons tmp tmpa))

Even though the intermediate steps are not type correct, the final term has exactly
the expected type and is, as a result, the correctly monadified branch of mapµ. With
this term generated, the definition of mapµ is complete and can be used in the main
procedure by utilizing the label rewriting mechanism. Thus, any call to map in the
unmonadified function can be exchanged by a call to mapµ if needed. To achieve this
effect, the corresponding function in Γµ has to either determine whether the monadic
version is required or simply use it wherever possible. To return to the example from
before, map example l : : ′b list becomes mapµ exampleµ l : : ′b list M. This value can then
be bound to the next computation step and, thus, be used in the same fashion as the
original subterm.

4.2.4. Introducing Monadic Effects

Another important use case of the label rewriting mechanism is the introduction of
monadic effects to arbitrary places in the code. In contrast to rewriting higher-order
operators, this method expects the labels to have no actual effect. For instance, let our
tool introduce a writer monad for logging, which has a write : : ′a → string → ′a M
function. In this case the label, which will be exchanged with a call to write, has to be
of type ′a→ string→ ′a. As Isabelle/HOL uses a pure language, any function of this
generic type can not depend on the second argument or have any side effects at all (cf.
the parametricity theorem about the identity function in Section 2.3). Accordingly, a
simple function of the necessary type could be write_label x s = x, which returns the
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first argument unchanged for all string inputs s. Given this definition, an unmonadified
usage of the label could be similar to the following:

f x = upto (write_label 42 ”the answer”) x

The monadified and unlabeled version would then be:

fµ x = (write 42 ”the answer”) �= (λtmp. uptoµ tmp x)

Other monadic effects, like memoization via retrieve_or_run, can be inserted in a similar
fashion. Any introduced effect is required to be defined beforehand and to fit the type
of the label.

In addition to these rather handy use cases for the label rewriting method, it is also
possible to find other more seldomly required modifications. The system also allows
for the monadification of mutual recursive functions and even more complex changes.
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5. Parametricity Reasoning

As mentioned above, the Monadification and Memoization framework does not only
introduce monadic wrappings automatically into programs, but proves this step to be
correct as well. Our approach aims for generalizing these proofs while not changing
their inner structure.

5.1. Basic Idea and Proof Mechanism

The main idea of the correctness proofs is to relate the original function to its monadified
counterpart by a consistency relation ⇓R that, thus, works as an inter-type relation for
monads. This relation asserts similar characteristics as the correctness definition from
[4], though it does not work on values wrapped in return but on values unwrapped by
run_state from within the monad. In addition, the relation ensures memory consistency
(cmem) for a fixed function f, i.e. the memory contains only mappings a 7→ r for which
f a = r holds. ⇓R is then defined for an underlying relation R as:

⇓R v s = ∀m. cmem m ∧ invm m −→
(case run_state s m of (v′, m′)⇒ R v v′ ∧ cmem m′ ∧ invm m′)

The memory invariant invm used here asserts that m is a correct memory, a property
that only depends on the underlying implementation. Both the invariant and the
consistency property have to be preserved by a run of the monad.

The proof itself is then built around the function relator 99K that was introduced in
Section 2.3 and is used here to lift the consistency relation from values to functions.
With this relator, it is possible to reason not only about monadified functions, but
also about arbitrary monad combinators like return or the lifted function application
operator (.) by parametricity reasoning as defined above:

(R 99K ⇓R) (λx. x) return

(⇓(R99K ⇓S)99K ⇓R 99K ⇓S) (λg x. g x) (.)
Thus, the correspondence between these combinators and the matching non-monadic
functions can be proven. In addition, both lemmata make evident how ⇓ is a fitting
relation for applying parametricity reasoning to monadic values.
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While the afore defined lemmata are mostly used in single proving steps, the main
correspondence theorem for a monadified function f ′m can be formulated as:

((=) 99K ⇓(=)) f f ′m

Other properties regarding both functions can be expressed in a similar fashion by
exchanging the equality operator by an analogous relation. Nevertheless, it holds for
any base relation that both f and f ′m have to be uncurried by a tuple abstraction, if f
expects more than one argument. Thus, the correspondence theorem for upto is:

((=) 99K ⇓(=)) (λ(l, u). upto l u) (λ(l, u). upto′m l u)

5.1.1. Correspondence Proof by Induction

The correspondence proof is then built upon complete induction on the recursion
structure of the monadified function1.

Though, this approach is said to be non-trivial to automate [25]. The reasons for this
are the congruence rules that are used by the function definition command fun to extract
recursive function calls and the corresponding context. This information is crucial to the
induction step, as it is used to generate the preconditions for the induction hypothesis.
The congruence rules used by default work solely on non-monadic operators and can,
therefore, not be applied to the hypothesis of the correspondence proof. As a result,
specific congruence rules based on parametricity reasoning have to be introduced to
resemble the default rules while directly relating monadic operators and their non-
monadic counterparts. These new rules are structured for a function pair f and f ′m like
the following example for map:

xs = ys ∀x. x ∈ set ys =⇒ ⇓S ( f x) ( f ′m x)

⇓list_all2 S (map f xs) (mapm . 〈 f ′m〉 . 〈ys〉)
map_mapm

Here, the list_all2 relator is a function that lifts relations from single values to lists,
whereas set builds a set of values from the list. The preconditions from map_mapm are
structurally similar to those generated by the default congruence rules and, hence, fit
in the proof scheme.

5.1.2. Termination

Besides proving the correctness by correspondence, the framework also proves the
monadified function to terminate in the same way as the original. This property is

1This is, in general, the same as for the original function, because monadification does only modify single
branches, but not the whole structure.
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necessary to work with full parametricity, as both functions have to either return the
same values for the same input or show the same meta behaviour. This meta behaviour
consists of side effects, non-termination or error handling. As Isabelle/HOL uses a
pure functional language not featuring error handling or side effects besides from
within monads2, only the non-termination has to be checked. Isabelle/HOL checks the
termination of a function f by building a well-founded relation f_rel over values from
its domain. This relation is based on the recursive function calls of f , thus relating the
arguments of these calls. Accordingly, the tool tries to prove the equality of f_rel and
the relation f ′m_rel for f ′m, as both functions share the same domain and are structurally
equal with regard to recursive function calls. With this equality theorem the original
termination proof can be replayed and, as a result, applied for the new function f ′m
as well. The replay may fail if the monadification reorders the control flow too much
leading to a disparity between f_rel and f ′m_rel. A failure could also be caused by one of
the afore mentioned congruence rules, as they are sometimes used for the termination
proof as well. In both cases, the framework tries to fall back to Isabelle’s normal
automated termination prover.

5.2. Generalized Proof Method

As one declared goal of our expansion approach is to lift as much functionality as
possible to a generic level, both the correspondence and the termination proof have
to be generalized. The underlying proof structure can be kept for this, because it is
based around specific lemmata that are used from within generic proof tactics. These
Isabelle/ML tactics form the core of the described induction proof. The necessary
lemmata for the correspondence proof can be generated from a small set of monad-
specific information. This set contains basic information like the used monad type M
with its corresponding bind and return combinators. In addition, a fitting consistency
relation ⇓′R, asserting all needed invariants as well as value correctness under R, has
to be given. This kind of relation cannot be generated for a given monad (even if no
invariants are required), because it is not generally possible to extract a value from a
monad without knowing the monad’s internals. Accordingly, correspondence theorems
for bind and return featuring ⇓′R must be included in the given information set. Formally
these conditions can be stated as (for a given relator R : : ′a→ ′b→ bool where ′a and
′b could also be the same type):

⇓′R : : ′a→ ′b M→ bool

2These monads will be left intact, which is why their correspondence is proven by the correctness
proof. In addition, all effects within the newly introduced monad are automatically discarded for any
parametricity proofs.
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Lemma 1 Let invm be the monad’s correctness invariant asserted by ⇓′R, then the following
rule can be used for an application of ⇓′R on a value wrapped in return:

invm R x y

⇓′R x 〈y〉
crel_return

Lemma 2 Let f : : ′a→ ′c and mf : : ′b→ ′d M be functions working on v : : ′a and m : : ′b M
with S : : ′c→ ′d→ bool, then the following rule holds:

⇓′R v m (R 99K ⇓′S) f mf

⇓′S ( f v) (m �= mf )
crel_bind

Both lemmata rely strongly on the inner workings of bind and return. In general, both
operators are expected to be defined by the definition command or else come with
unfolding lemmata called bind_def and return_def. Moreover, congruence lemmata for
each used higher-order combinator are required as well and need to be of the same
form as the auxiliary congruence theorems used in the old framework version. The
associated congruence rule for map can be formulated as:

xs = ys ∀x. x ∈ set ys =⇒ ⇓′S ( f x) ( fµ x)

⇓list_all2 S (map f xs) (mapµ fµ ys)
map_mapµ

Our extension idea is meant to already provide a small number of higher-order monadic
combinators including map, fold and comp with corresponding congruence rules. While
these can simply be selected by the user, any other needed combinators have to be
given to the tool along with matching congruence rules. In addition, rules to lift the
monadic effects introduced by the label rewriting mechanism are needed. Together, all
lemmata, rules and the consistency relation form the basis of the main proof locale,
which, as a result, exhibits all necessary lemmata and theorems for the correspondence
proof. Because normal Isabelle locales are not expressive enough to work for generic
monads (cf. Section 2.1), the mentioned locale has to be newly generated for every
monad.

Whereas the correspondence proof is taken care of by the generated locale, proving
termination of monadified functions can still be handled the same as before. This step
may even become easier in some cases, as the monadification by our new extension
is more lightweight. This approach is made possible by the above-defined binding
order of arguments for our new monadification procedure. The method of binding
the arguments in reverse order of application, i.e. the first argument is located in
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the outermost bind, ensures the same evaluation order as in the original function.
This works analogously to the lifted function application operator and is, in general,
sufficient for the termination proof.
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6. Comparison by Example

To conclude the reasoning about our new extension idea to the Monadification and
Memoization framework, we compare the changes it would bring in more detail in the
following. At first, both the monadification and the proof process are compared, then a
real world example is examined to show the usability of our approach.

6.1. General Comparison

The biggest change introduced by our proposed extension is the ability to generically
handle almost any monads. As a result, the framework’s scope has shifted and
expanded from only simplifying dynamic programming to the processing of almost
unlimited possible use cases. However, this modification comes at the price of an
increased implementation overhead for users. The effort of providing all necessary
functions and theorems can increase significantly for some applications. This increase
is especially due to the need for term rewriting rules and congruence lemmata for
higher-order combinators and the monadic effects that are introduced by the label
rewriting mechanism. Although applications using the old framework version only
need to provide slightly more auxiliary information for the label mechanism, they may
have to be adjusted and extended by hand. The real-world example below shows the
extent of the modifications needed.

Another crucial change concerns the monadification procedure. Not only does our
new approach waive the need for the lifted function application operator, but it also
monadifies with less overhead and less impact on function types. For example, let fib
denote an "unusual [sic] definition of the Fibonacci sequence" [25]:

fib n = 1 + sum ((λ f . map f [0..n− 2]) fib)

[x..y] is a shorthand notation for the upto function introduced above. For simplicity,
only the subterm (λ f . map f [0..n− 2]) fib is examined further. For this term, the old
monadification procedure produces

〈λ f ′m. mapm . 〈fib′m〉 . [0..n− 2]m〉 . 〈fib′m〉

where [0..n− 2]m = uptom . 〈0〉 . (〈λx. 〈λy. 〈x− y〉〉〉 . 〈n〉 . 〈2〉) (based on [25]). As
the new monadification procedure does not use the lifted function application operator,
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the terms above have to be unfolded in regard to this operator to be comparable:

〈λ f ′m. (mapm �= (λg. 〈 f ′m〉 �= g)) �= (λh. [0..n− 2]m �= h)〉
�= (λ f . 〈fib′m〉 �= f )

[0..n− 2]m = (uptom �= (λg. 〈0〉 �= g)) �= (λ f . ((〈λx. 〈λy. 〈x− y〉〉〉
�= (λi. 〈n〉 �= i)) �= (λh. 〈2〉 �= h)) �= f )

There are 14 applications of bind in total, of which at least six could be trivially simplified
due to the second monad law. On the other hand, our new monadification procedure
generates the following shorter result for the same input term:

〈fibµ〉 �= (λ f . (〈0〉 �= (λtmp. 〈2〉 �= (λtmpa. 〈n− tmpa〉

�= (λtmpb. uptoµ tmp tmpb)))) �= (λtmp. mapµ f tmp))

Although this new term may be harder to understand than the old version using ( . ), it
contains nine fewer applications of bind, resulting in a total of five. This finding aids
our claim that the new method is in fact more lightweight.

In contrast to these major changes, the proof method does not change much. Both
framework versions provide methods to automatically prove monadification correctness.
Both also make heavy use of parametricity reasoning and congruence rules to handle
induction proofs. In addition, both versions rely on replaying the termination proof
or falling back to Isabelle’s standard tool. The main difference between the two
versions is the theorems used in the proofs, which depend only on the used monad.
Another difference is where these theorems come from. Whereas the current framework
version only uses built-in lemmata and relations, our new extension approach is
meant to generate the necessary set from custom user-input information. Although
this generation process is yet to be fully implemented, there are no major problems
regarding this step in theory.

6.2. Real-World Example: Bellman-Ford

The Bellman-Ford algorithm solves both the single-source as well as the single-sink
shortest path problem for weighted directed graphs. As both problems can be refor-
mulated into the other by simply changing the edge directions, we will concentrate on
the single-sink variant. The graph properties are modelled as a list of node weights
W : : nat → nat → int where all n nodes are denoted by natural numbers. The sink
node is fixed as t ∈ {1, . . . , n}. The algorithm then calculates the weight of the shortest
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path from each source j ∈ {1, . . . , n} to t for a maximum number of edges k along the
path. To calculate the weight for a specific j and a specific k + 1, the algorithm first
computes the shortest path weight for k steps from j and then all minimal weights for
the paths from each other node i ∈ {1, . . . , n | i 6= j} to t for k steps plus the weight
from j to i. The minimum of all these paths is then the shortest path from j to t in at
most k + 1 steps. As this procedure exhibits an optimal substructure and overlapping
sub-problems by definition, it is an instance of dynamic programming and can be
optimized by using memoization. The basic implementation of the algorithm is defined
as:

b f 0 j = (if t = j then 0 else ∞)

b f (Suc k) j = min_list (Cons (b f k j) (map (λi. W j i + b f k i) [1..n]]))

Here, min_list finds the minimum value inside a list and returns it, whereas [x..y]
denotes again the upto function from before.

Due to this simple structure, the Bellman-Ford algorithm was also used as an example
in the old framework [24, 25], where the monadified version of bf was given as (adjusted
to our formalization):

b fm = 〈λk. 〈λj. b f ′m k j〉〉
b f ′m 0 j =m item 〈t = j〉 〈0〉 〈∞〉

b f ′m (Suc k) j =m 〈λxs. 〈min_list xs〉〉 . (〈λx. 〈λxs. 〈Cons x xs〉〉〉 . (b fm . 〈k〉 . 〈j〉) .
(mapm . 〈λi. 〈λx. 〈W j i + x〉〉 . (b fm . 〈k〉 . 〈i〉)〉 . [1..n]m))

Here =m denotes the application of memoization to the term that follows as defined
above.

As the Bellman-Ford algorithm is ideal for memoization, our new monadification
procedure is here used with the memoization state monad. Therefore, the monadified
term generated by our procedure is similar, yet more lightweight:

b fµ 0 j =m 〈if t = j then 0 else ∞〉
b fµ (Suc k) j =m (b fµ k j �= (λtmp. (〈[1..n]µ〉 �= mapµ (λi. b fµ k i �=

(λtmpa. 〈W j i + tmpa〉))) �= (λtmpa. 〈Cons tmp tmpa〉)))
�= (λtmp. 〈min_list tmp〉)

This function definition has only been slightly simplified by the frameworks internal
simplification method (based solely on the second monad law) to achieve a higher
readability. Yet, even the original version would use significantly less binds than the
old framework. In contrast to this decrease in structural overhead, the setup overhead
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for the user is increased. Decisive for this fact is the utilization of mapµ. Whereas
the memoization can be lifted by lemmata already given within the old framework
version, a congruence lemma for map has to be proven by hand. Fortunately both the
label function and the lemma for map are rather simple and can be constructed using a
simple term exchange function and lemmata about the state monad and its operators
respectively.

Both implementations try then to prove the theorem

((=) 99K ⇓=) (λ(x, y). b f x y) (λ(x, y). b fM x y)

where b fM is either b f ′m or b fµ respectively. Thus, the proof is done by induction and
makes use of the described locales. As the locales for the new generic proof method
can not be generated yet, it had to be implemented by hand. However, there were not
many theorems that had to be given due to the great number of helpful theorems from
the old version. The proof for our new implementation directly relates every bind with
a corresponding function application in the original function and every return with the
non-monadic value. For instance, the outermost call to min_list in the non-monadic
function relates to the outermost bind of the monadified function. As a result, both
the function relation for min_list and (λtmp. 〈min_list tmp〉) and the value relation
for the arguments have to be proven as next steps. This approach is then carried
out until all subgoals are proven and all subterms are related. Despite this simple
method, which works nearly the same as in the old version, our new tool has a certain
limitation. Normally the rule about bind is automatically matched to the outermost
function application in the non-monadic term. Unfortunately, the way the bind rule is
defined and applied either leads to always matching the identity function, instantiates
some relations not correctly or does both. This shortcoming can be overcome by trivially
adjusting the applied rules to match the current goal by hand or in theory by a specific
proof tactic that has yet to be implemented.

Despite all differences, both implementations are proven to correspond to bf, which
in turn is also proven to be a correct implementation of the Bellman-Ford algorithm’s
core functionality.
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7. Discussion

The main goal of our approach to extend the Monadification and Memoization framework
was to decrease the structural overhead of the monadification method while also
allowing for a greater number of different monads. The extent, to which these objectives
have been reached, is the subject matter of the following sections.

7.1. Achievements

In general, the structural monadification overhead primarily depends on the number of
introduced bind applications. For most monads the bind operation is more expensive
than the return operation, as it has to ensure the correct threading of all monadic effects.
Hence, the number of bind statements is an appropriate heuristic to measure overhead
introduced by our procedure. The simplest take on this heuristic compares the two bind
applications within the lifted function application operator to not more than one in our
new method. Especially the examples in Chapter 6 give a good overview of how much
this difference matters. At the same time, our new method has maintained provability,
which becomes particularly evident in the example in Section 6.2. To summarize, the
structural overhead introduced for all monadified terms has been successfully reduced
by our new approach. Despite this theoretical gain, the concrete improvement in
runtime has not been measured. As we suppose a direct causality between the number
of function applications and the associated runtime, a positive outcome is expected
nevertheless.

The generalization to more monads is not quantitatively measurable, as an un-
bounded number of monad instances could exist or be implemented. As a result, we
see the general possibility to use other monads as the state monad as a success. In
theory, most standard monads can be used with little to no implementation overhead
for the user regarding the monadification process itself. In practice, the state monad,
a simple writer monad, a list monad and some other simple monads were proven to
be usable. For these monads, both the introduction by our monadification procedure
and the automated proving mechanism did not come with particular problems. As
our monadification method depends not on the underlying monad type and all effects
other than bind and return can be inserted with the label rewriting mechanism, the
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applicability of a specific monad is based primarily on provability of all necessary
lemmata.

Although, for some examples like the list and the option monads, a somewhat different
approach to the consistency relation requires more effort by the user. Both include
a type constructor that envelopes no value at all (the empty list Nil and the None
constructor). Handling these cases accordingly may not be necessary for all possible
use cases. Nevertheless, there are use cases that rely on these constructors and need
to be handled with care. If, for example, the monadic effect of a None is introduced
with the label rewriting system, all following values that could have been embedded
in a Some are also reduced to None. This effect is important to the proof mechanism,
as there are only two generally possible ways of handling the None in ⇓′: the relation
has to either relate all elements with None or none of them. Whereas the first case may
be only useful if the user tries to implement non-total functions by hand in a similar
fashion than Isabelle/HOL does by default, the second case is the correct relation for
most use cases. As the relation that does not relate None would fail for every occurrence
of this constructor, the correspondence of the monadified function can only be proven
for a program thread with no None at all. In most cases, this assertion corresponds to a
computation without errors. Hence, the missing validity for None results is expected.
In a similar way, other monads that can encode erroneous behaviour by a special
constructor have to be handled with care, as they cannot be proven for all possible
cases.

Though, it can be noted that the possible usage of the monads mentioned above is a
successful extension to the original framework.

7.2. Shortcomings

Although our extension approach resulted in a new monadification method that meets
both primary goals, it also comes with a certain number of limitations. These are
primarily about the increased implementation overhead for the user of the framework
and are described in detail in the following.

A major shortcoming of our approach is directly linked to the Isabelle/HOL system:
the missing possibility of defining a type class for monads. Such a type class would
make reasoning about monads a lot easier, as it provides a lot of constraints and
assertions by default. As Isabelle/HOL does not come with the capabilities to provide
such a type class, we were forced to handle the generalization to more monads by
automatic generation from a custom set of information. This approach requires more
work by the user and leads, for this reason, to a not optimally usable framework. Thus,
a better formalization idea for monads in Isabelle/HOL has yet to be found.
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Another shortcoming is based on the label rewriting mechanism and how it can be
used. If this method is used for several cases of higher-order operators or monadic
effects, at least one lemmata is required for each of these cases. As the user has to come
up with all of these lemmata by himself, the users abilities in proving them can be a
limiting factor. On another note, the user can introduce arbitrary many effects into the
program, which may result in arbitrary many bugs or faults that are rather difficult to
debug. This was not the case for the old framework and is, thus, a limitation to the
usability of our approach.

Last but not least, the biggest shortcoming of this thesis is the missing implemen-
tation of our approach in the context of a whole framework extension. Only the core
functionalities have been implemented as a reference implementation. Other parts that
would need a direct binding to the framework have at least been tried out by hand for a
small number of examples. Therefore, more shortcomings of our approach may become
evident later. Though, it is quite likely, that these regard only parts not introduced in
this thesis, as all main ideas have turned out to verifiably work for most cases.
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We have introduced our proof-of-concept for an extension to the Monadification and
Memoization framework [24] for Isabelle/HOL. Our goal for this proof-of-concept was
to find a new monadification procedure that, firstly, has less monadification overhead
than the old method and, secondly, allows for the usage of other monads than the state
monad. At best, this would trivially include all possible monads, but exceptions for a
small number of specific cases would be ok either. As the framework is implemented
in Isabelle/HOL, our new procedure was also expected to allow for an automatic
correctness proof.

Our approach was then built around a simple monadification idea, i.e. binding the
operands to the operators and adding returns where needed. Hereby, the first operand
is bound by the outermost bind. The rest of the operands is bound in the same way
until the last operand is bound with the innermost bind. The procedure also simplifies
the bindings to a certain degree, as all variables are not bound but rather directly added
to the operator. This works correctly, as variables cannot be monadified any other way
than by embedding them in a return. Therefore, the second monad law allows for this
simplification step. In addition to this basic monadification method, our procedure also
exhibits a facility to exchange certain terms for predefined monadic counterparts called
the label rewriting mechanism. The standard use case for this is the correct handling
of recursive calls. Other than that, higher-order operators using monadified functions
and monadic effects are supposed to be introduced by the label rewriting method. We
implemented the procedure as a reference implementation and tested it for different
term structures and monads. We then adjusted the frameworks proving mechanism
to match our new monadification procedure. Whereas the top level tactics based on
parametricity reasoning could be kept the same, the underlying lemmata and proof
information are now generated for each monad separately. We tried this mechanism
out for different monads and functions and could even repeat the monadification of
the Bellman-Ford algorithm.

With all examples being done, we concluded that our approach to extend the frame-
work was successful. Our new monadification algorithm is able to monadify the same
programs the old framework could. While doing this, it uses at most two fewer ap-
plications of bind for a function application than the old framework did with its lifted
function application operator. Our approach also allows for custom monads and intro-
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duces the corresponding monadic effects via the label rewriting mechanism. Despite the
changes in the monadification method, it is still possible to prove the correspondence of
a monadified function and its original counterpart by extended parametricity reasoning.
The example of the Bellman-Ford algorithm, where we introduced memoization and
proved the resulting function to be correct, concludes our work and fulfills our goal of
keeping the functionality of the old framework.

8.1. Future Work

We have provided an approach to improve and extend the Monadification and Mem-
oization framework. Despite this, a lot of work is still to be done. In addition to
completing the implementation, there are several points that we would need to look
into in more detail. First and foremost, the proof tactics have to be improved to work
with all generated and provided lemmata and still result in correct interim results. The
current problems with this step are described in Section 6.2. Next, the label rewriting
mechanism should be investigated further, as it can be used to implement nearly
arbitrary rewriting methods as of now. The concrete effects on the proofs introduced
by the rewriting should also be a future research topic. Depending on the findings,
the mechanism may have to be limited to certain use cases only. In general, the focus
of future research should be on how more different monads can be introduced and
how this affects the proving mechanism. Based on this, more sophisticated structures
as monad transformers may be worthy of further examination, as well. For this, the
monomorphic approach by Lochbihler [12] could also be included in the framework
as an optional extension. Moreover, the other features of the framework, namely the
imperative heap monad and the bottom-up computation, should be investigated in
combination with our improvements. Last but not least, after all the above steps are
done, a new entry to the Archive of Formal Proofs1 has to be submitted. Thereafter, the
framework extension we aimed for can be seen as ready to use.

1AFP for short, see https://www.isa-afp.org/.
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