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Abstract

The Iris framework implemented in Coq allows defining higher-order concurrent
program logics based on separation logic. This work investigates how well that
framework can be ported to Isabelle/HOL and whether the proof automation for
such a port can be as efficient as or better than in Coq. To this end, a partial port
of Iris has been developed that contains all necessary facilities to work with selected
real-world examples. In this process, we analyzed how Coq features used by Iris can be
translated to Isabelle and found that the whole framework can in general be recreated
there, although with certain caveats. A full port is necessarily more verbose with
regard to composable proofs and requires either an axiomatic extension to HOL or an
mapping from syntax to semantics outside of the logic depending on how the Iris logic
is embedded. In another step, we developed specialized proof automation methods for
our Iris port and compared them with existing Coq machinery for the same purpose.
To this end, we developed translation techniques for common mechanization patterns
from Coq to Isabelle. We conclude that at least in the context of the Iris logic neither
Isabelle nor Coq provide significantly stronger proof automation compared to the other
system.

Das im Beweisassistenten Coq implementierte Rahmenwerk Iris ermöglicht es neben-
läufige Programmlogiken höherer Ordnung basierend auf Separationslogik zu definieren.
Diese Arbeit untersucht wie gut sich dieses Rahmenwerk nach Isabelle/HOL über-
tragen lässt und ob die Beweisautomatisierung für solch eine Übersetzung effizienter
oder besser sein kann als für das Original. Zu diesem Zweck wurde eine partieller
Übersetzung von Iris entwickelt, welche mit alle notwendigen Funktionen ausgestat-
tet ist um ausgewählte realistische Beispiele handhaben zu können. Als Teil dieses
Prozesses analysierten wir Ansätze um Merkmale von Coq die Iris nutzt nach Is-
abelle zu übertragen und kamen zu dem Ergebnis, dass eine vollständige Übersetzung
möglich wäre, obgleich diese gewissen Einschränkungen unterliegen würde. Eine
vollständige Übersetzung würde eine ausführlichere Handhabung von modularen
Beweisen benötigen. Des Weiteren würde abhängig von der gewählten Einbettung
der Iris Logik entweder eine axiomatische Erweiterung des HOL Systems oder eine
explizite Übersetzung von Syntax zu Bedeutung außerhalb der Logik notwendig. In
einem weiteren Schritt entwickelten wir spezialisierte Beweisautomatisierungsmeth-
oden für unsere Übersetzung von Iris und verglichen diese mit der vergleichbaren
Maschinerie in Coq. Zu diesem Zweck entwickelten wir Übersetzungsmethodiken
für übliche Beweismuster. Wir kommen letztlich zu dem Schluss, dass im Kontext
des Iris Rahmenwerks weder das Isabelle noch das Coq System eine klar stärkere
Beweisautomatisierung ermöglichen.

iv



Contents

Acknowledgments iii

Abstract iv

1 Introduction 1

2 Related Work 3

3 Background 5
3.1 Isabelle/HOL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Coq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 Embedding of Logics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.4 Separation Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Introduction to Iris 11
4.1 Resources in Iris . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Uniform Predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3 Iris Base Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.4 Advanced Propositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 About porting Iris to Isabelle 18
5.1 About porting from Coq to Isabelle . . . . . . . . . . . . . . . . . . . . . 18
5.2 Algebraic Hierarchies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.3 Dynamic Composable Resources . . . . . . . . . . . . . . . . . . . . . . . 21
5.4 Impredicative Invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6 Automation 27
6.1 Low level proof principles . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.2 Higher level proof principles . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.3 Basic proof automation methods . . . . . . . . . . . . . . . . . . . . . . . 31
6.4 Sophisticated proof automation for Iris proofs . . . . . . . . . . . . . . . 34

6.4.1 Iris Proof Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.4.2 Diaframe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.4.3 Automation in Isabelle . . . . . . . . . . . . . . . . . . . . . . . . . 36

v



Contents

7 Discussion and Conclusion 40
7.1 Discussion of a full Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.2 Discussion of Automation . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Bibliography 44

vi



1 Introduction

“One of the reasons I prefer higher-order logic to dependent type theories — apart from simple
semantics, equality that works and no need to put everything in the kernel — is that dependent
types seem to make automation much more difficult.”

— Lawrence C. Paulson, Machine Logic [39]

Our modern world relies heavily on digital technology. Many of the involved systems
are based on low level concurrent principles that rely on direct memory management,
e.g. locks. Implementing these primitives correctly and efficiently is not trivial. Yet,
erroneous implementations, especially of memory accesses, are a common reason for
software vulnerabilities. For instance, the latest report about zero-day exploits by the
Google Project Zero team [14] relates around 70% of disclosed faults in 2021 to memory
corruption vulnerabilities, which mostly stem from few, well known patterns. These
patterns can often be found easily by formal methods such as program verification.
As a result, formal verification can improve the correctness of implementations of the
aforementioned primitives and guarantee the absence of certain classes of bugs and
vulnerabilities.

Reasoning based on separation logic is especially useful for low level, concurrent
memory accesses. Variations of this logic allow their users to express fine-grained
propositions about resources such as memory locations and their ownership even in
the context of concurrent computation. In addition, separation logic facilitates program
verification in a modular and well automatable fashion. For these reasons, many
specialized separation logics have been developed for a broad range of verification
tasks over the last twenty years. Unfortunately, many of the developed logical systems
are not compatible with each other and make combining developments impossible.
To unify this diverse research field and its “next 700 separation logics” [36], the Iris
framework strives to provide a shared platform for all sorts of specialized program
logics based on higher-order, concurrent separation logic [20, 21, 25, 45].

The Iris framework is formalized in the widely used proof assistant Coq [18]. Al-
though this allows a great number of users to utilize the framework, it is not available
for users of other proof systems. These users can not make use of the framework,
because the underlying logic systems of the proof tools they are using are often not com-
patible with the Coq logic. Among these tools, the interactive theorem prover Isabelle
with its object logic Isabelle/HOL is one of the most widely used ones. Even though
the Isabelle community has developed several useful separation logic libraries, none of
these are as generic as the Iris framework and can, therefore, be used to formalize the
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1 Introduction

same kind of complex program specifications in a correspondingly specialized program
logic. To be more precise, there exists no framework for higher-order, concurrent
separation logics that would allow different developments to be compatible like Iris
does. Therefore, a port of Iris to Isabelle/HOL would enrich the Isabelle ecosystem
with a new way to define specialized program logics for composable developments.
Moreover, such a port could help in attaining a better understanding of how to make
Isabelle/HOL and Coq better interoperable. As a result, this thesis strives to answer
the question whether the Iris framework can be ported to Isabelle and how Coq-specific
logical primitives can be translated.

However, even a generic logical framework such as Iris, which allows expressing
many useful program specifications, can only improve its users’ experience in formaliz-
ing proofs if it comes with strong and adjustable proof automation. The initial quote by
Larry Paulson, who originally developed the Isabelle system, expresses the widespread
assumption that the limitations of the HOL logic allow for better proof automation in
comparison to other logic systems. Therefore, this work examines proofs in the Iris
logic and contrasts comparable proof principles from both Coq and Isabelle to find
evidence for or against this common conjecture.

The main contributions of this thesis are a partial port of Iris to Isabelle and the
thus obtained results to the aforementioned research questions. The port contains all
necessary components to verify selected small, but realistic examples and is available as
open source software [42]. It consists of about 10k lines of Isabelle code, including ex-
perimental alternative approaches to porting specific implementation details. However,
the port also contains axiomatizations of central concepts for which we did not find an
adequate formalization. In addition to the port, we developed idiomatic translations for
several proof automation mechanisms and convenience features of Iris and surveyed
how feasible and idiomatic they would make a full port to Isabelle.
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2 Related Work

Although there have been a number of works about parallel developments in more than
one proof system, there are not as many about porting developments between them.
Chen et al. formalized and proved Tarjan’s strongly connected components algorithm
in Why3, Coq, and Isabelle [4]. They kept their formalizations as similar as possible
and chose to not use idiomatic features of the different systems to make them better
comparable. In contrast, we decided to aim for an idiomatic translation of the Iris
framework to show whether a full port would be possible and could be integrated in
further developments as well as the Coq formalization.

In contrast, Yushkovskiy and Nawaz et al. published a survey each on proof systems
in general [33, 52]. Whereas the former focuses on comparing only Coq and Isabelle
on a high level, the latter contrasts a greater number of different systems with each
other. In contrast to our work, both surveys only investigate high-level differences in
an abstract manner and do not explore how to translate specific developments between
the systems. Such a high-level overview might help deciding which system to use in a
green-field development but does not suffice to port an existing formalization between
the systems.

It is also necessary to note that a full Iris port to Isabelle would not be the only
separation logic framework available. The Archive of Formal Proofs contains three
different separation logic developments by Klein et al. [23], Hou et al. [17] and Lammich
and Meis [27]. The development by Klein et al. provides a formalization of the algebra
of abstract separation logic, for which the library by Hou et al. adds a specialized
automatic solver. Propositions in this logic are defined as assertions on values of an
arbitrary resource type. Similarly, the development by Lammich and Meis defines
propositions in the logic to be HOL predicates on a fixed heap type. This library is an
extension to the Imperative HOL framework and the related Refinement framework
(cf. [26]). It also comes with automated proof methods for the logic’s entailments. In
contrast to the step-indexed Iris logic with embedded meta assertions, the simpler
logics for these frameworks allow for a strong, yet simple proof automation. However,
all of these developments are aimed at simple verification of primarily imperative
programs and, thus, differ significantly from the more generic Iris framework. As a
result, the developments all serve different purposes.

We also need to consider work related to Iris. This project is the first to attempt a port
of the Iris framework, but there is currently another project going on by Lars König to
port the Iris Proof Mode [25] and MoSeL [24] to Lean. The project has only started as of
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2 Related Work

the time of this writing and investigates mostly orthogonal questions to our work. For
this reason, their work is quite likely to find other difficulties to overcome and, thus,
further the overall understanding of how one can port complex developments such as
Iris between widely used theorem provers.

On another note, our work on automating proofs in the Iris logic is mostly related to
the Diaframe tool by Mulder et al. [32]. This tool allows full automation of a commonly
used subset of Iris formulae and provides at least partial automation for other proof
goals. Section 6.4 contains a more detailed description of how their automation
approach works and how our work relates to it. For this reason, our work can also be
compared to other automatic program verification tools based on separation logic such
as Caper [13] in the same way as Diaframe. The Diaframe paper already provides a
detailed survey of how these tools relate and differ from its approach.
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3 Background

The following paragraphs introduce the most relevant basics that are required to
understand our work on the central research questions. To this end, both the Isabelle
and the Coq proof assistants are introduced with a focus on how they differ on a
high level. In a next step, we explain the fundamentals of separation logics needed
for understanding Iris, which is then introduced in chapter 4. Throughout this thesis,
implementations and names of functions and definitions in Coq or Isabelle are denoted
with typewriter font, whereas italic font is used for logical formulae.

3.1 Isabelle/HOL

The interactive theorem prover Isabelle [37, 38] is a LCF-style [16] logical framework.
This means that it allows users to define object logics on top of a meta logic and reduces
proofs to an abstract datatype, which is constructed by a small, trusted logic kernel. The
meta logic is called Isabelle/Pure and consists of an intuitionistic fragment of higher-
order logic, which supports three types of dependence (cf. [50]): terms depending on
terms (i.e. functions), proofs depending on terms (i.e. universal quantification), and
proofs depending on proofs (i.e. implication). Proofs in Isabelle/Pure are instances
of an abstract datatype, which can only1 be constructed from axioms and inference
rules. These inference rules are based on higher-order unification and higher-order
resolution. This approach to proof representation is called the LCF architecture after
the LCF system by Gordon [16] and allows the system to “forget” the concrete proof
steps after the proof object has been constructed. For this reason, the exact proof script
provided by the user is irrelevant to the proof as long as Isabelle’s kernel can use it to
actually construct the correct proof object. As a result, proofs in Isabelle depend only
on the trusted logic kernel. Additionally, the proof terms can be explicitly recorded to
be checked by external verifiers (cf. [49, §2.5]).

Isabelle/HOL In contrast to Isabelle/Pure, Isabelle/HOL [34] is based on a simply
typed version (cf. [6]) of classical set theory called Higher Order Logic (HOL, cf. [15]
for the theorem proving environment of the same name). It is the most widely used
object logic for Isabelle, partially due to it being implemented more closely to Pure
than other object logics. To be more precise, HOL types are represented as Pure types,

1Isabelle also allows the user to explicitly opt-in to omitted proofs denoted by the sorry keyword.
Though, this feature is only meant for prototyping.
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3 Background

which makes the translation of terms and proofs from HOL to Pure straightforward
and aids much in the development of low-level automated proof mechanisms. However,
this implementation detail also fixes the flexibility of the HOL type system to its Pure
counterpart. As an example, HOL can not have higher kinded type variables as Pure
does not support these either. Yet, Isabelle/HOL supports the classification of types
by their sorts, which are lists of type classes a type is an instance of (cf. [49]). These
(axiomatic) type classes are similar to the ones found in Haskell but support a wider
range of objects for ad-hoc polymorphism. They do not only support fixing terms
and functions for a type, but also axioms about these. Axiomatic type classes in
Isabelle/HOL are defined as a special subtype of locales, which are comparable to fixed
proof contexts containing types, terms and assumptions.

The HOL type system is based on three fundamentals: the bool type for booleans
and propositions, the infinite type ind of individuals (e.g. used as the basis for natural
numbers) and the function type constructor (⇒). All other types are defined by either
combining existing types and type constructors or naming a subset of values of an
existing type as a new type. The latter option is commonly called semantic subtyping and
can, for example, be used to guarantee a type invariant by construction. More complex
type definitions, such as algebraic data types, can be implemented in terms of product
and sum types or by defining an initial algebra/final coalgebra. The Isabelle datatype
package by Traytel et al. (cf. [46]) handles such datatype definitions automatically and
ensures that the defined types adhere to the notion of so called Bounded Natural
Functors. This approach also allows for (co-)recursive datatypes, thus enabling HOL
to support both types with infinitely many unique inhabitants and infinitely sized
values. However, HOL functions over recursive types must terminate to be sound. As
a result, all function definitions are either not recursive or must follow a decreasing
induction schema. Although these schemas can often be induced by the system, the
user must provide a proof that the function will terminate in all cases for complex
recursion patterns.

In-line Isabelle/ML Isabelle allows its users to write system level code in-line in its
own domain-specific language Isabelle/ML. This language extends Isabelle’s imple-
mentation language Standard ML (subsequently ML) with the Isabelle/Pure specific
APIs and enables direct interaction with the system. This kind of interaction can be
used to write logic level code generation, custom proof procedures, and handling
of system data structures, inter alia. The ability to write such functionalities in-line
and evaluate them alongside object logic definitions requires no recompilation of the
system and enables a straightforward development cycle. For this reason, many Isabelle
developments facilitate in-line ML code for small mechanization tasks. Likewise, this
work makes heavy use of in-line ML code to reduce boilerplate code and overcome
limits to the definition of custom proof automation methods.
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3.2 Coq

In contrast to Isabelle, the Coq system is based on only one fixed logic — the Calculus of
Inductive Constructions (CIC). This logic is based on the Calculus of Constructions (CoC)
by Coquand and Huet [7], which is the type theory at the top of the lambda cube by
Barendregt [1]. The CoC allows dependence over all three dimensions of the cube and,
therefore, supports polymorphic terms (terms depending on types), type constructors
(types depending on types), and dependent types (types depending on terms). In
addition, the CIC extends this system with the notion of inductive definitions of terms
and types. These allow the user to work with recursive definitions provided that these
have a (least) fixed-point and terminate. Other than inductive definitions, Coq users
often utilize dependent records to bundle types, terms and properties into a single unit.
These records are also the basis for Coq’s type classes and canonical structures; these are
two similar principles used for abstracting formalization details and structuring proof
reasoning. Both of these use cases are described in more detail in later sections.

Unlike Isabelle, Coq does not separate propositions and terms but utilizes the Curry-
Howard isomorphism to interpret types in the CIC as propositions and terms as
proofs. Based on this fundamental notion, validating a proof becomes the same as
checking whether its term is of the claimed type. Therefore, Coq’s kernel employs
type checking, term evaluation, which is necessary to type check dependent types, and
higher-order unification to verify given proofs. Although the existence of a term with
the corresponding type is already enough to prove a proposition in the Curry-Howard
correspondence and the actual term can therefore be ignored after type checking, proofs
in Coq are in general relevant and are most of the time kept available2. These proofs
have to be constructed as terms and can sometimes be used as such afterwards again.
Their size and complexity can also have a great impact on the proof’s runtime and,
although this does not contradict proof irrelevance, might effect the user’s acceptance of
these specific proofs. On the other hand, the Coq system follows the de Bruijn criterion,
i.e. a Coq proof term contains all information necessary to validate it and can thus be
easily exported to be checked by other tools, as well (cf. [5, section 1.2.3]).

Although Coq also supports program extraction from its internal programming
language Gallina to its implementation language OCaml, the system does not support
dynamic extensions in the way Isabelle does with in-line ML code. Every new function-
ality written in OCaml can only be added to Coq as a plugin. This process requires
recompilation of the involved components. For this reason, Coq has been extended
with several libraries for meta programming languages, which allow the user to define
new functionalities in the user space and without the need to recompile. One such
library for tactical reasoning, Ltac, is described in more detail in section 6.2.

2See also the difference between Prop and SProp as described in [18].
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3.3 Embedding of Logics

Similarly to how both the CIC and Isabelle/Pure are implemented in terms of Standard
ML and OCaml respectively, other logics can be embedded in their programming lan-
guages as well. For Isabelle, this is also the way that object logics such as Isabelle/HOL
are formalized on top of Pure. Although the general idea is equivalent for all of these
levels of embedded logics, there exist relevant differences, which also play a large role
for the formalization of a logic framework such as Iris. In general, most logic systems
are implemented in one of two embedding methods: shallow or deep embedding (cf.
[51]). These categories describe how the logic interacts with the meta logic system it is
implemented in and can also be used in other contexts such as programming languages
and their semantics.

Shallow Embedding In general, a shallow embedding reuses existing structures like
types and terms and can therefore exploit all facilities of the meta system. In the context
of programming languages, domain specific languages are a common example for
shallow embeddings, as they often consist of specialized constructions of their host
language. In the context of logics, most systems nowadays contain a lambda calculus
for constructing formulae, which makes it possible to share structures between an object
logic and its meta system. For example, the Isabelle/HOL object logic is embedded
shallowly into the Isabelle/Pure meta logic by reusing its type system. Therefore, all
well-formed HOL terms are also well-formed Pure terms and can be handled in the
same way in the context of term manipulation and proof automation.

Whereas the Isabelle/HOL system only reuses the Pure type system and adds basic
terms via axiomatization, the Iris formalization in Coq is a shallow embedding based
on a single Gallina type and no term axiomatizations. This allows Iris propositions to
be defined directly with semantics encoded in Coq’s proposition type Prop. For this
reason, it is not only trivial to add new logical operators to Iris but also possible to
directly relate semantic properties with them. In addition, a shallow embedding makes
it easy to embed meta terms in object level formulae and, therefore, lift definitions and
reasoning to whichever level is most convenient.

Deep Embedding In contrast to a shallow embedded logic, a deep embedded logic
is in most cases strictly distinct from the meta system. This means that terms and
formulae of the embedded logic are instances of a meta datatype, e.g. based on the
constructors of an algebraic datatype. These terms can then be typed with an equally
embedded type system or even left untyped. Moreover, the semantics of the embedded
logical operators and primitives need to be defined separately from their syntax by
translating them into meta level definitions. Although this translation can often be used
to relate syntax and semantics directly, it is in general possible to perform arbitrary
transformations to the syntax and break the semantic meaning by doing so. This
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kind of transformations allow for code optimizations and proof mechanisms based on
rewriting, but require an external soundness proof to show that these operations do
not break the intended semantical meaning. This process can be aided by intermediate
stages of the transformation. As an example, it is possible to extend the syntactic
formulae with meta terms to represent certain semantic properties. Yet, due to the
representation of embedded terms as instances of an abstract datatype, these meta
terms can only have one of a fixed number of different types. Especially a type system
without generalized algebraic datatypes such as HOL can not support other ways of
embedding meta level terms directly into the object level.

In general, both embedding methods can be used to formalize many logical systems
or program language semantics without any significant difference. They mostly differ in
how mechanizations for them are implemented. Pretty printing for a better readability
and proof automation are two common examples of such mechanisms.

3.4 Separation Logic

Reasoning about programs with shared mutable data structures can be quite involved.
To solve this problem, Reynolds introduced the notion of separation logic in his seminal
work [41] and based it on the logic of bunched implications by O’Hearn and Pym
[35]. Since its first introduction, many different flavors of separation logic have been
developed for a great number of different purposes. Yet, they all share the same basic
idea: abstracting resources as part of the program state and making reasoning about
these local. As an example, abstract memory representation is a simple and often
utilized resource; mostly as a heap map from abstract location identifiers to memory
cell contents. For simplicity, the following section focuses on an abstract program
state representation containing only a heap h. Let h ⊢ P denote that the proposition P
holds for the abstract program state encoded by h. Moreover, let ⊕ denote the disjoint
composition of two heaps, i.e. the union of the maps if their domains are disjoint.

Most separation logics contain both the classic logical operators such as conjunction
or implication and the resource-specific operators separating conjunction (denoted by ∗)
and magic wand (−∗). The separating conjunction P ∗Q denotes that the two propositions
P and Q hold for distinct parts of the heap. This means that the compound proposition
holds for a program state in which the heap h can be divided into two distinct subheaps
h1 and h2 (i.e. h = h1⊕ h2) such that both h1 ⊢ P and h2 ⊢ Q hold. Thus, the separating
conjunction operator functions as a sort of conjunction for predicates about the heap.
Similarly, the magic wand operator can be seen as an implication or extension on
heap predicates. This means that P −∗ Q holds for a state h if given any state h′

such that h′ ⊢ P, the combined state h⊕ h′ satisfies Q. As an example, assume that
h ⊢ P ∗ (P −∗ Q) holds. This is equivalent to the fact that there exist two distinct heaps
h1, h2 such that h = h1⊕ h2, h1 ⊢ P and h2 ⊢ P −∗ Q all hold. Due to the semantics of
the magic wand operator, one can then deduce that h ⊢ Q also holds.

9



3 Background

Although the described semantics only hold for the very simple case of a heap
map, separation logic can easily be defined to work with arbitrary other resources
in a similar way. Moreover, the separating conjunction and magic wand operators
enable modular and well structured reasoning about these resources. For this reason,
separation logic has become a standard tool for reasoning about programs with direct
memory manipulation, shared mutable data structures, and pointers. This holds for
both interactive theorem provers and fully automated tools. The latter are in general
based on either completely decidable separation logics (cf. [2]) or on other variations
that allow for good proof automation.

Classical and Affine Separation Logics Separation logics can be divided into two
categories: classical and affine separation logics. These categories differ in both the
semantics of propositions and whether they have associated weakening rules. The
classical separation logic requires propositions to only hold for the exactly necessary
resources. In the context of our heap example, a proposition that does not refer to the
heap can only hold for a given empty heap. On the contrary, propositions also hold
for larger resources in an affine separating logic as long as they contain the minimal
necessary fraction. In the heap example, a proposition that only expects the cell at a
location l to hold a value v holds also for a heap that additionally contains other values
at other locations at well. In the context of affine separation logic, it is possible to define
weakening rules, with which unneeded assumptions can be dropped. The intuition
behind these rules is that from assertions that expect more resources one can always
deduce an assertion that requires only a part of these.
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4 Introduction to Iris

The Iris framework allows its users to define higher-order concurrent program logics
with a separation logic at their core. For this, they have to provide certain predicates
and definitions about the programming language they want to use. Based on these,
the actual program logic is instantiated on top of Iris’ base logic. Iris also comes with
lots of mechanisms to make reasoning in its program logics more comfortable and
straightforward. In addition, the framework contains an instantiation for the simple,
ML-like language HeapLang, in which most examples in the Iris formalization in Coq
and this thesis are implemented.

The following sections introduce the Iris basics necessary to understand the rest of
the thesis. It should be noted that the complete formal definitions for all introduced
concepts can be found in the Iris documentation [45], where they are defined abstractly.
For this reason, that document can be seen as the theoretical background for both the
Coq formalization and our port.

4.1 Resources in Iris

Many low level programs and data structures manipulate specific resources such as
memory cells or locks. For this reason, Iris allows the user to define their own resource
types and reason about these inside the Iris logic. To be useable with Iris, these resource
types need to be resource algebras. A simplified definition of the corresponding type
class in Isabelle can be found in listing 1. Resource algebras are structures similar to
partial commutative monoids and include a validity predicate, a (partial) core operator,
and a total composition operator. These operators need to adhere to some specific rules
such as associativity but can in general be reduced to the following intuitions. The
validity predicate decides which elements of the resource can be used without breaking
the soundness of the other operations. The core operator computes a (unique) identity
element with regard to the composition for an input resource element if possible.
Whereas the core is also allowed to be partial, composition needs to be defined for all
resource elements. To satisfy this property, some resource types need to be extended
with a dedicated invalid element for all possible compositions that should not result in
sound behavior.

Although it suffices for most resource types to be resource algebras, reasoning about
how a program manipulates resources can require differentiation of different program
steps. For this reason, certain resource types need to be Ordered Families of Equivalences
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4 Introduction to Iris

class ra =

fixes valid :: 'a ⇒ bool

and core :: 'a ⇒ 'a option

and comp :: 'a ⇒ 'a ⇒ 'a (infix ·)
assumes ra_assoc: (a · b) · c = a · (b · c)

and ra_comm: a · b = b · a
and ra_core_id: core a = Some a' =⇒ a' · a = a

and ra_valid_op: valid (a · b) =⇒ valid a

. . .

Listing 1: Resource algebra type class.

class ofe =

fixes n_equiv :: nat ⇒ 'a ⇒ 'a ⇒ bool (infix
n

=)

assumes ofe_refl: x
n

= x

and ofe_sym: x
n

= y ↔ y
n

= x

and ofe_trans: x
n

= y =⇒ y
n

= z =⇒ x
n

= z

and ofe_mono: m ≤ n =⇒ x
n

= y =⇒ x
m

= y

Listing 2: OFE type class.

(OFE). This means that these resource types must be associated with a family of
equivalence relations indexed by natural numbers. This family is easily expressed as a
single step-indexed equivalence relation that is downwards monotone with regard to
the index. A simplified formalization of this property can be found in listing 2. The
basic idea of OFEs is to encode equivalence for computation steps up to an index. In
particular, more computation steps can only show that two values are distinct and never
that they were actually equivalent. This concept is similar to how pattern matching
algorithms work. These algorithms are allowed to return a negative result whenever
they found a difference in parts of the two input terms but must not succeed without
having checked the full terms.

Apart from OFEs, Iris also has the concept of Complete OFEs (COFEs), which are
equipped with a notion of limits with regard to step-indexed equivalences. Although
the exact definition is not relevant for this work, the notion of COFEs is quite central
to Iris in that they enable the definition of fixed-points for some functions on a COFE
based on Banach’s Fixed-Point theorem. This property is especially relevant for the
uniform predicates introduced in section 4.2.

12
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class camera = ofe +

fixes valid :: 'a ⇒ nat ⇒ bool

. . .
assumes camera_extend: valid a n =⇒ a

n

= (b1 · b2) =⇒
∃c1 c2. a = c1 · c2 ∧ c1

n

= b1 ∧ c2
n

= b2

. . .

Listing 3: Camera type class.

Whereas OFEs lift the notion of equivalence to a step-indexed semantics, resource
algebras are generalized in a similar way to so called cameras1. For this reason, the
camera structure extends the OFE structure and requires a step-index validity predicate,
as well as other step-index related properties. A simplified version is shown in listing 3.
Due to the need for step-indexing for some resource types, cameras and OFEs are more
generally used classifications instead of resource algebras. The notion of resources that
do not rely on step-indexing can easily be achieved by defining the OFE and camera
instances such that they ignore the step index. This kind of instantiation is denoted as
discrete OFEs or discrete cameras respectively. Other than discrete cameras, Iris also
features the notion of cameras with a total core or with a common unit element with
regard to composition. These variants allow for simpler reasoning about some camera
properties and can sometimes be obtained by the combination of several cameras. For
example, the option type constructor found in both HOL and Gallina lifts a given
camera to a unital camera by adding the None constructor as the unit and lifting all
operators through the Some constructor.

4.2 Uniform Predicates

Iris enables users to implicitly reason about resources through its propositions of type
iProp. These propositions form the separation logic that underlies the Iris program
logics and enable the user to abstractly reason about program resources. However,
these propositions are internally defined as predicates over resources and the step-
index. These predicates are required to be uniform, i.e. they need to be monotone with
regard to composition and step-index and ignore invalid elements. The monotonicity
requirement denotes that if a predicate holds for a fixed resource object a and an index
n, then it also needs to hold for all smaller indices m ≤ n and extensions b to the
resource object. For this notion, an extension b to a resource object a is a resource that
is equivalent to the composition a · c of a and some other resource c.

1For the origin of this name, we refer the interested reader to the Iris Appendix [45] and the fundamental
works about Iris [20, 21].
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⌈P⌉ := λ_ _. P P ∧Q := λa n. P a n ∧ Q a n ∀x. P x := λa n. ∀x. P x a n

� P := λa n. P core(a) n ▷ P := λa n. n = 0∨ P a (n− 1)

P ∗Q := λa n. ∃b1 b2. a n
= b1 · b2 ∧ P b1 n ∧Q b2 n

P −∗ Q := λa n. ∀m b. m ≤ n −→ valid (a · b) m −→ P b m −→ Q (a · b) m

Figure 4.1: Selected basic Iris operators defined as uniform predicates.

Based on this definition, uniform predicates form an OFE and COFE but not a
camera. The aforementioned ability to define fixed-points for COFEs makes it possible
to define recursive uniform predicates and is relevant for several fundamental usages
of these. Although uniform predicates are already quite versatile, they are by definition
only defined over a single camera resource. The actual proposition type of Iris iProp

supports the use of arbitrary many different resource types. This property requires a
few technicalities to provide a simple yet expressive user interface and gets examined
in more detail in sections 5.3 and 5.4.

4.3 Iris Base Logic

Iris comes with a number of basic propositions that form the Iris base logic and are
sufficient to define most more complex propositions. Some of these propositions are
listed in fig. 4.1 with their definition in terms of uniform predicates. Of these, the
pure predicate is the most basic one, as it embeds meta level propositions into the Iris
logic. This proposition can be seen as a uniform predicate that does not depend on
the resource and step arguments (cf. fig. 4.1) and is denoted by the syntax ⌈P⌉ for
a Coq/HOL proposition P. Other than the pure proposition, the Iris base logic also
contains the classic logical operators conjunction (∧) and disjunction (∨). The semantics
of these operators can be seen as simple point-wise lifting of the corresponding meta-
level operators to the level of uniform predicates. Similarly, the Iris base logic contains
the universal (∀) and existential quantifiers (∃) that are allowed to range over arbitrary
meta-level types. Their semantics is also point-wise lifted from the meta-level. It is
also noteworthy that the quantifiers are allowed to range over Iris propositions and
higher-order predicates, too.

In contrast to these lifted propositions, the separating conjunction and magic wand
operators are defined in terms of camera functions as depicted in fig. 4.1. Iris encodes
an affine separation logic and assigns the operator’s semantics accordingly. The
semantics of the separating conjunction operator can be seen as a direct translation of
the semantics introduced in section 3.4, but with the camera composition instead of
the heap addition. Likewise, the magic wand operator has the semantics of a resource
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extension by composition. Similarly to the heap version, the Iris magic wand only
reasons about extensions that are valid with regard to the camera validity operator.

Apart from these standard logical operators, the Iris base logic also contains more
specialized operators. Of these, the persistence (�) and later (▷) modalities are in
general the most relevant operators. The general notion of a persistent assertion
denotes that it holds independently from other assertions. This property implies that
the proposition only takes the duplicable parts of resources into consideration. These
duplicable parts remain present even under camera composition, which results in the
assertion holding regardless of other facts in the context. Accordingly, the persistence
operator lifts the embedded proposition to a persistent level and makes it ignore non-
duplicable resource parts. It does so by reasoning about the core of a given camera
object as depicted in fig. 4.1. This definition results in the correct notion, as the core is
an identity element with regard to camera composition for both itself and the original
object and is therefore duplicable, e.g. core(x) = core(x) · core(x). As a result of
the reduction to duplicable resources, conjunction and separating conjunction become
equivalent below the persistence modality.

By contrast, the later modality denotes that the wrapped proposition holds at the
next step-index, i.e. at the next step of computation. This notion is encoded by reducing
the step-index input of the according uniform predicate as depicted in fig. 4.1. The
ability to delay propositions is central to the Iris logic, as it guarantees the logic’s
soundness against a paradox which occurs otherwise (cf. [20, 21, 45]).

Other than the operators and definitions introduced above, the entailment proposition
is the most central concept to the Iris logic. The entailment P ⊢ Q of two Iris proposi-
tions P and Q can be intuitively seen as an implication on valid resources. To be more
precise, it encodes that for all valid combinations of a resource object and a step-index
for which P holds, Q must also hold. This also means that, if P holds for all valid
resource and step combinations, than Q must also hold for all of these. Interestingly, in
this case the proposition P −∗ Q also holds for all valid cases. In general, most proof
goals and reasoning rules of the Iris logic are based on entailment and can be combined
by derived rules such as entailment transitivity, also often called the cut rule.

4.4 Advanced Propositions

The Iris framework does not only contain the base logic but also many other language-
agnostic propositions that can be used to formalize more complex program specifica-
tions. These propositions are mostly related to three of the core reasoning principles
in Iris: ghost state, impredicative invariants, and weakest preconditions. Of these three,
ghost state is the most fundamental, as it describes parts of an abstract program state
without a direct representation in an execution of this program. An example of this
could be an abstract state machine to model how a certain data structure can be used
or access permissions that are only enforced at the language type level. For simplicity,
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every kind of resource can be seen as a piece of ghost state, even if it has an execution
time correspondent such as the actual memory. To make direct reasoning about these
kinds of resources possible, a proposition that can own a piece of ghost state is required.
To this end, Iris introduces the own predicate, which takes a camera resource and a
name and ensures that this resource is part of any satisfying global state. As such, own
γ x encodes the ownership of a given resource object x that is included in a bigger
ghost state piece with name γ. This notion becomes apparent with the following rule
own γ x ∗ own γ y ⊣⊢ own γ (x · y), where ⊣⊢ denotes entailment in both directions. In
this context, a single own γ x proposition is called a ghost location in the Iris literature.

In addition to ghost states, Iris comes with higher-order invariants to encode propo-
sitions that hold at all times and even in a concurrent setting. This notion can be
understood best in the context of a concurrent program. There, an invariant describes
a property that needs to hold after each program step if it held before. Similarly, Iris
invariants can also be understood as containers owning resources that all threads can
access at the same time. In this context, a thread can gain temporary full access to
the invariant and even modify the underlying resources for the duration of an atomic
step, as long as they are restored afterwards. Based on this understanding, predicates
about the memory representation of locks or protocols for accessing critical sections (cf.
[20, section I.3.4]) are common use cases for invariants. The fact that the encapsulated
propositions in invariants can themselves be any Iris proposition such as own or even
another invariant makes these to one of the most important features of Iris and allows
the user to define arbitrarily nested propositions. The implications for the implementa-
tion of this feature are investigated in greater detail in section 5.4 and are, therefore,
deferred to that section.

Based on higher-order ghost state, i.e. the combination of ghost locations and in-
variants, users can define many useful purely logical specifications for data structures
and programs. Yet, the predicates and propositions defined thus far allow no direct
assertion about program steps. For this purpose, Iris defines a weakest precondition
predicate WP. It encodes the notion of a minimal required precondition WP e {v. Q},
such that after evaluating the expression e the postcondition Q holds for the resulting
value v. The predicate requires the framework to be instantiated with a concrete
programming language first but is otherwise defined only in terms of the Iris base
logic. For the language-dependent part, the weakest precondition depends on the type
of program expressions, the language’s reducibility predicate and computation step
relation, as well as an associated predicate about concrete program states. For simplicity,
the concrete formalization of the weakest precondition predicate is omitted as it is not
relevant for this work. Yet, it is relevant to know that the weakest precondition of an
expression needs to be defined recursively. If the expression is already a value, the
weakest precondition is just the same as the postcondition predicate applied to the
value. If, however, the expression can still be evaluated or reduced further, e.g. for a
call-by-value function application, then the weakest precondition needs to also contain
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the notion of all further steps. Due to this, the definition of the weakest precondition
predicate is quite involved and relies on the aforementioned fixed-point construction
for COFEs to be defined in a sound way.

The weakest precondition predicate is often found at the top level of program
specifications and proofs and is therefore the main tool in using Iris for program
verification. As such, an entailment from some hypotheses on the left-hand side to a
single weakest precondition predicate on the right-hand side is a common proof goal.
This kind of goal is also underlying Iris’ hoare logic expressions. Nonetheless, a typical
proof state for such specifications involves a simple weakest precondition on the right
side of an entailment. This position is also relevant for reasoning about the goal, as
some Iris rules can only be applied if the entailment’s ride-hand side is of a specific
form. For example, after doing one programs step, i.e. after reducing the expression of
the weakest precondition predicate once, a single later modality can be lifted from the
left-hand side of the entailment.
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Porting a program from one programming language to another is often a rather
straightforward process. Most programming languages used today are turing complete
and can therefore be reduced to a few core principles. Porting these is then often just
a one-to-one translation of corresponding principles. Furthermore, most mainstream
programming language also feature some sort of foreign function interface to enable
direct inter-language communication. With this, it is easily possible to obtain a single
program from a source code base with parts written in C, Rust and Haskell, for example.

Although this kind of interoperability is desirable for interactive theorem provers
as well, it is not as easily achievable as with programming languages. Whereas
programming languages have the common ground of machine instructions or the
operating system’s APIs, proof assistants need to be based on suitable logic systems to
have a common ground for any direct interoperability1. For the same reason, porting
developments from one logic to the other can be rather tricky if they rely on inherent
features of the source system that are not or not easily available in the destination
system. This problem also came up in our development of a partial port of the Iris
framework to Isabelle/HOL and is discussed in the following sections in more detail.

5.1 About porting from Coq to Isabelle

Often, porting inductive definitions such as recursive functions and algebraic datatypes
between Gallina and Isabelle/HOL can be trivial, as both languages have similar syntax
and ways to define such logical objects. In addition, many propositions that can be
expressed in any common logical system are of a similar form in HOL and Coq. This
observation seems to be trivial as mathematical expressions should not depend on the
system they’re expressed in but can be surprising given the fact that both the weak
type theory of Isabelle/Pure and HOL are quite different from the calculus of inductive
constructions that Coq is based on.

Despite the syntactic similarities, there are also several commonly found differences
that make porting definitions and lemmata more intricate. For one thing, Iris utilizes
the finite gset and gmap types from the std++ library [12], as some uses cases in Iris

1Interoperability between proof systems is still a central topic in current research projects such as the
EuroProofNet COST action https://europroofnet.github.io/groups/. As our work focuses only
on porting Iris and not making the Coq formalization interoperable with our Isabelle implementation,
we choose to discuss this topic no further.
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require the involved sets and maps to be finite. Similarly, Isabelle/HOL has the finite
set type fset and the finite map type fmap in its standard library, which can be used
for these use cases. However, most automation and standard tools in Isabelle/HOL
are designed to work with unrestricted sets and maps, i.e. these sets and maps can
potentially be infinitely sized. The according set and map types are related to their
finite counterparts but are necessarily distinct. To be more precise, the finite types
are semantic subtypes of the unrestricted ones. Therefore, the handling of finite sets
and maps differs significantly between Coq with std++ and Isabelle/HOL. Especially
proofs about instances of the finite types require more boilerplate code, as reasoning
steps for these types often come with additional prerequisites. Additionally, some
proofs may require the user to relate the finite instances back to the unrestricted type
to allow for the necessary proof steps. In these cases, the lifting/transfer package of
Isabelle/HOL can be used to make reasoning more straightforward. This package
introduces sophisticated mechanisms to lift definitions and proof states for types that
are defined from subsets of other types, such as semantic subtypes.

The lifting/transfer package is also utilized to make handling of uniform predicates
easier, as these can be defined as a semantic subtype of functions. In this case, the
lifting/transfer package is used similarly to the sealing mechanism utilized in the Coq
formalization of Iris. This mechanism is introduced in std++ and provides the user with
fine-grained control other when the sealed definitions are unfolded by the system. This
functionality allows the user to choose whether they want to reason on the semantic
level of uniform predicates, i.e. how they handle camera objects, or only with already
proven properties of propositions.

On another note, the embedding of meta level propositions into the Iris logic by the
pure predicate can potentially also become problematic for translating usages of Iris
to Isabelle/HOL. HOL has not the same facilities as the CIC and, even though this
chapter presents several general translation techniques, not every valid Coq definition
can be ported. Especially more intricate definitions that rely heavily on dependent
types or the generic usage of type classes like monads can not be expressed easily in
Isabelle/HOL and might even be impossible to translate correctly. Yet, this may be a
negligible problem, as the pure operator is often only used for simple propositions that
fall into the shared logical subset of HOL and CIC.

5.2 Algebraic Hierarchies

Many formal developments in computer science and especially mathematics classify
logical objects in algebraic hierarchies. This classification makes it possible to abstract
over different entities and reduces the amount of boilerplate code necessary to express
the same properties for each new object. Iris’ OFE, COFE, and cameras are a rather
small example of such an algebraic hierarchy and their formalization motivates this
section.
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instantiation prod :: (camera, camera) camera begin

definition valid_prod :: 'a×'b ⇒ nat ⇒ bool where

valid_prod (x, y) n = valid x n ∧ valid y n

definition core_prod :: 'a×'b ⇒ ('a×'b) option where

core_prod (x, y) = case (core x, core y) of

(Some x', Some y') ⇒ Some (x', y')

| _ ⇒ None

definition comp_prod :: 'a×'b ⇒ 'a×'b ⇒ 'a×'b where

comp_prod (x, y) (a, b) = (x·a, y·b)
end

Listing 4: Camera type class instance for the product type prod.

Coq offers two idiomatic ways of constructing such hierarchies: type classes and
canonical structures. Although both concepts are essentially just syntactic sugar and
specialized machinery for dependent records, they have quite different strengths and
weaknesses. The algebraic hierarchy of Iris is implemented by combining both concepts
to overcome the respective shortcomings. Whereas the central categories such as OFE
and cameras are formalized as canonical structures with the mixin pattern (cf. [29]),
smaller and less central concepts such as the camera functions are mostly formalized as
type classes. The utilization of canonical structures for the central concepts avoids the
potentially exponential blowup in the size of proof terms that an equivalent unbundled
type class formalization could lead to (cf. [19, 44]). Similarly, the usage of type classes
for the other concepts reduces boilerplate code required for the instance search and
makes debugging problems with instance resolution easier due to a custom debugging
facility for this mechanism.

In contrast to Coq, Isabelle has no canonical structures and its type classes are based
on locales, i.e. instead of records. Therefore, they are not record instances and thus
values of the programming language, but special logical contexts that are bound to a
single type. Despite this difference, both type classes and locales are the idiomatic way
of constructing algebraic hierarchies in Isabelle/HOL, as they enable users to abstract
over multiple types, terms and propositions. Therefore, formalizing the central concepts
of Iris is straightforward in Isabelle/HOL as seen in listings 2 and 3. Instantiating the
type classes of the algebraic hierarchy is similarly straightforward. For example, the
product type (×) can be instantiated as a camera by lifting the camera operations of the
two argument types as depicted in listing 4.

Although most instances can be translated equally directly, there still are a few
pitfalls that make this translation a bit more verbose. As an example, Isabelle/HOL
does only support defining type class instances or locale interpretations explicitly, but
not via a parameterized constructor or something equivalent. In contrast, Iris contains
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several instance constructors, such as discreteO and iso_cmra_mixin, that can be used
to equip types with a discrete OFE definition or define a camera instance for a new type
by an isomorphism from an already defined camera. It would be possible to provide
such facilities in Isabelle by generating the according type class instances via custom
ML code. The necessary ML code is more verbose than the equivalent construction in
Coq and obfuscates the concrete usages of possible proof goals that would, for example,
be required to construct the camera definition via isomorphism. These trade-offs make
a direct translation to Isabelle only feasible for very straightforward to use constructions
and it is often just simpler to directly construct the class instance in the normal way.
Other than that, Isabelle’s type classes are also more limited than the ones in Coq in
that they only support a single instance per type. Yet, this fact is actually an advantage
as it makes type class instance resolution a trivial operation and prevents any form of
exponential blowup due to the direct corelation of types and class instances.

5.3 Dynamic Composable Resources

The uniform predicates introduced above are generic over the user-provided resource
camera. This works well for a single contained development but becomes cumbersome
if one wants to combine two separate developments. If the related facts are defined
over different cameras, they would need to be redefined to be composable. The Iris
formalization in Coq overcomes this problem by generalizing all facts and definitions
over a compound resource type. This compound type is then equipped with a type
predicate to denote that it contains a specific camera. In this way, it is possible to make
theorems generic in the exact resource type and still require certain cameras to be
available.

The compound resource type is formalized as a product type of finite maps from
ghost variable names to the actual camera objects (cf. [45, section 7.5]). These maps
support an arbitrary number of instances of each camera type and are thus also
necessary to achieve actual composability. Whereas these maps can be defined in terms
of standard map types such as gmap, the product type requires a rather non-standard
way to look up single camera types in it, i.e., as the domain type of a map. A list of
camera maps with a lookup mechanism based on dependent types is the solution to
this requirement utilized in the Coq formalization. The concrete implementation is not
relevant for our work; nonetheless, it should be obvious that the dependent type based
mechanisms can not be trivially translated to Isabelle/HOL. It should also be noted
that the own predicate is implemented in terms of the camera map lookup mechanism,
which makes this mechanism necessary to every feature-complete port of Iris.

For this reason, our port employs a workaround based on on-demand code generation
and locales to emulate the dynamically composable resource type in Isabelle. To this
end, our compound resource type is just the simple product type of partial maps (⇀)
from ghost names to camera instances. For constructing and accessing single ghost

21



5 About porting Iris to Isabelle

1 type_synonym 'a cmra_map = ghost_name ⇀ 'a

2 type_synonym resource = cmra1 cmra_map × cmra2 cmra_map × . . .
3 × cmraN cmra_map

4

5 definition get_cmra2 :: ghost_name ⇒ resource ⇒ cmra2 option where

6 get_cmra2 name res = (fst (snd res)) name

7 definition constr_cmra2 :: ghost_name ⇒ cmra2 ⇒ resource where

8 constr_cmra2 name x = (∅, [name 7→ x], ∅, . . . , ∅)

9

10 locale inRes =

11 fixes get_cmra :: ghost_name ⇒ 'res ⇒ 'camera option

12 and put_cmra :: ghost_name ⇒ 'camera ⇒ 'res

13 assumes . . .
14

15 interpretation cmra2In: inRes get_cmra2 constr_cmra2

Listing 5: The compound resource type and inRes locale.

values, specific getter and constructor methods of the form shown in listing 5, lines
5–8, are utilized. Whereas the getters just traverse the tuple and then look up the given
name in the correct map, the constructors build a new resource object by introducing a
single-valued map for the given name and camera object and setting the other tuple
entries to the empty map. By doing so, OFE equivalence and validity of the resource
object are the same as for the inserted camera object, which allows us to define the
own predicate for any camera in a sound way based on the corresponding constructor
function. It is trivial to see that the getter and constructor functions follow the same
simple pattern and are only trivial boilerplate code. For this reason, we decided to
generate them given a specific compound resource type. The code generation facility is
implemented in Isabelle/ML and constructs the functions stepwise by simply iterating
over the tuple type.

The getters and especially the constructors are then abstracted via the locale inRes

defined in listing 5, lines 10–13. Apart from the functions, this locale also fixes a
few relevant properties about them. Similarly to the functions themselves, the locale
interpretations can also be generated via ML code. For this, it is possible to exploit
the regular structure of our generated functions and provide an automated solver that
uses a small number of common rules. Based on the locale, it is now also possible to
define the generic own predicate to work with any resource type. Equipped with these
definitions, users can then define lemmata that rely on the presence of a certain camera
by assuming the respective inRes interpretation. This requires more boilerplate code
than the Coq equivalent but is otherwise equally expressive.
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Context `{!inRes Σ (excl unit)}.

Definition locked (γ : ghost_name) : iProp Σ := own γ (Excl ()).

. . .

Listing 6: The formalization of the locked predicate in Coq.

context

fixes get_lock :: ghost_name ⇒ 'res ⇒ unit excl option

and constr_lock :: ghost_name ⇒ unit excl ⇒ 'res

assumes lock_inG: inRes get_lock constr_lock

begin

definition locked :: ghost_name ⇒ 'res upred where

locked γ = own constr_lock γ (Excl ())

. . .

Listing 7: The formalization of the locked predicate in Isabelle/HOL.

The exact difference becomes apparent in the following example, which focuses
on the modular definition of a simple lock primitive. Such a primitive requires a
locked predicate that encodes that the current thread has exclusive access to the locked
resources. A simple formalization of the locked assertion involves the excl camera
wrapper around the unit type. This wrapper type has a single valid constructor Excl,
which can not be composed with any other element and, thus, guarantees exclusive
access. Based on this intuition, it is straightforward to define the locked predicate
in both Coq and Isabelle/HOL as seen in listings 6 and 7. Whereas the Coq version
requires only a single inRes assumption in the context, the Isabelle version is quite
verbose as it requires the user to define both correctly typed getter and constructor
functions per camera in addition to the inRes assumptions. Moreover, the two usages
differ in that the Isabelle inRes assumption is actually a plain theorem that is obtained
from instantiating the locale. In addition, the own predicate also requires the constructor
explicitly. Similarly, one needs to use the named assumptions such as lock_inG for
reasoning about the defined constants in this context. The reason for this behavior is
that all theorems that are defined in the context of inRes require an instance fact to
be applicable, i.e. a theorem with content P is then of the form inRes ?get ?constr

=⇒ P.
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5.4 Impredicative Invariants

The Iris base logic is expressive enough to give specifications for many non-concurrent
data structures and programs. Though, for concurrent data structures one mostly
wants to have some semi-consistent state predicates that always hold for all threads
and that might only be violated for the runtime of atomic operations. To satisfy this
need, Iris provides the impredicative invariants introduced above. These invariants can
be described completely in terms of combinators of the Iris base logic and are based on
the so called world satisfaction proposition. This proposition essentially acts as a data
base for all registered invariants. It keeps them in a map, indexed by the invariant’s
name and also stores whether the invariant is currently open, i.e. whether its contents
can be used freely for the current duration of an atomic operation. Based on this world
satisfaction proposition, one can then define fancy updates. This operator carries the
notation of an update to the world satisfaction state, i.e. it encodes a change of the
closed and opened invariant sets. This state change is encoded in so called masks, which
are the sets of names of invariants available at that point, i.e. invariants that have been
allocated before and are not open at this point. To be more precise, masks denote a
minimal required set of available invariants. Based on this, the fancy update assertion
|⇛E1 E2 P holds iff a logical update of the state can be performed, such that at the end

P holds and the mask E1 is changed to E2. The actual invariant proposition P
N

for
embedded proposition P and name N is then defined in terms of fancy updates (cf.
[45, section 9.4]), although we omit the concrete definition for simplicity in this work.

In Iris the impredicativity of invariants is their most important property, i.e. they can
contain arbitrary other Iris propositions such as ghost state ownership, other invariants
or weakest preconditions. This fact allows the Iris logic to be as expressive as it is and
enables the usage of complex program specifications.

Due to the fact that the world satisfaction proposition stores invariants, and thus
Iris propositions, the type of Iris propositions needs to be defined recursively. Above,
we introduced the simplified assumption that uniform predicates instantiated with
some resource camera would be enough, but due to the propositions being part of this
resource type, one actually gets a recursive domain equation for the Iris proposition
type iProp of this form:

iProp := UPred(Res(iProp))

Here, UPred stands for the type constructor of uniform predicates applied to the free
type constructor Res for a resource type that can rely on iProp. A solution to this
equation is guaranteed by the America-Rutten theorem (cf. [3, 45]) and gets computed
explicitly in the Iris Coq formalization. The main point of the America-Rutten theorem
is the existence of a fixed-point solution for recursive domain equations with a specific
kind of bifunctors from the category of COFEs to the category of cameras. This equation
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type_synonym 'res::camera upred = 'res ⇒ nat ⇒ bool

definition upred_sep :: 'res upred ⇒ 'res upred ⇒ 'res upred where

upred_sep P Q a n = ∃b1 b2. n_equiv n a (b1 · b2) ∧ P b1 n ∧ Q b2 n

Listing 8: A shallow embedding of the separating conjunction.

is then slightly different than our first approximation:

iProp := UPred(Res(iPropFP, iPropFP)), with iPropFP ∼= UPred(Res(iPropFP, iPropFP))

This construction can not be directly translated to Isabelle/HOL. The reason for this
shortcoming is HOL’s lack of higher kinded type constructors and thus a common
classification of (bi-)functors. Yet, even without the general notion of a functor, it is
possible to prove specific camera types to be the correct functors for the America-Rutten
theorem and define the corresponding map functions in HOL. Similar to the class of
functors, it is also not possible to express domain equations in terms of types. However,
this limitation is not relevant for the case of iPropFP, as the equation there only requires
a fixed-point up to type isomorphism, which can be expressed as an Isabelle/HOL
locale. Lastly, Isabelle/HOL does not support reasoning about types in the way Coq
does, which makes proving the America-Rutten theorem in HOL at least very difficult.

All of these facts make it seem that Iris’ iProp type can not be formalized (easily)
in Isabelle/HOL. Yet, we found that the extent of this limitation depends on whether
one employs a shallow or deep embedding to formalize Iris in Isabelle. As described
above, the Iris Coq formalization is based on a shallow embedding of the Iris base logic.
This decision was made to obtain easier integration of Coq syntax and types into the
logic [21]. Similarly, our Isabelle port of Iris is also based on a shallow embedding with
the uniform predicates being step-indexed HOL predicates over the given camera. A
simplified version of this encoding can be found in listing 8. It is quite important to
note that the type for uniform predicates is generic in the camera argument type, which
disqualifies the type to be a bounded natural functor. As introduced above, a type
needs to be classified as a functor of this sort to be usable with Isabelle/HOL’s datatype
package. This package is the standard way of constructing non-trivial types and also
one of the few ways to define types based on recursive domain equations like the iProp

type. As a result, the aforementioned constructions seem to be the only practical way
to prove the existence of the iProp fixed-point type in the case of a shallow embedding.
For this reason, we decided to axiomatize the fixed-point type for our Iris port. For this,
a new type is declared and used for the definition of iProp. The isomorphism between
these two types is then introduced as an axiomatized locale instance.

In contrast, a deep embedding of the Iris logic could be defined without the need
for an explicit fixed-point computation or axiomatization, yet induces other limitations.
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The recursive iProp type can actually be encoded via the Isabelle/HOL datatype
package in the case of a deep embedding and does not rely on the America-Rutten
theorem any more. Yet, a deep embedding of the Iris logic also comes with its own
problems, which are partially what motivated the shallow Coq formalization in the
first place. Iris relies heavily on meta logic propositions to enrich its logic without the
need to re-introduce all necessary logical objects. For this reason, the Iris logic contains
embedded meta propositions and quantifiers over variables that are also allowed to
be used in these meta propositions. Yet, the combination of these quantifiers with
arbitrarily typed variables makes deeply embedding the Iris logic into Isabelle/HOL
tricky. First of all, the algebraic datatype for the uniform predicates must contain all
basic operators of the logic. Therefore, quantifiers must also be constructors of this
datatype. For this, one could define constructors to take a function from the variable
type to a proposition, which is a common formalization method for quantifiers. In this
case, the quantifier constructors would need to take a function from an arbitrary type
to uniform predicates, e.g. Exist ('b⇒ 'a upred) where 'a is the underlying camera
type. If a formula requires more than one type of variables, it can not be encoded in
this way due to the problems described in section 3.3. As an example, the proposition
Exist (λb::bool. ⌈b⌉) can not be embedded as the P in Exist (λx::(ghost_name ⇀

bool). P ∗ own γ x).
To overcome this problem, one can introduce an abstract variable format and require

an explicit mapping from this format to actual terms for the semantics. The format
for the variables can, e.g., be strings or natural numbers and can be combined with
a De Bruijn index notation for bound variables. Based on this idea, it is possible
to formalize quantifiers over arbitrary typed variables and use them throughout the
formula. However, this approach also makes it necessary to explicitly set up a mapping
from variables to a user defined semantic representation, e.g. a specific meta level
term or function. Such a mapping needs to take the abstract variable representation
as input and return the corresponding HOL term. However, these HOL terms can
be of various types, which makes it impossible to encode such a mapping in HOL
itself. In addition, the mapping would need to keep track of all introduced variables
and other user defined mappings in a unified data structure, which, again, can not be
expressed in HOL due to the combination of arbitrary types. Instead, it is necessary to
implement both the mapping and the transformation from deep embedded formulae
to their semantics in Isabelle/ML. Moreover, the embedded meta propositions used by
the pure operator are allowed to contain variables that are bound by a quantifier. For
this reason, the pure operator can not take HOL terms but must take terms encoded in
a complete deep embedded version of the HOL language.
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Interactive theorem provers have been in use for aiding humans with doing mathe-
matical proofs for more than half a century now. They can both be used to verify user
given proofs, support the construction of proofs, and even provide whole proof scripts
on their own. This kind of proof automation reduces the amount of domain specific
and proof engineering related knowledge needed to make larger developments feasible.
As a result, proof assistants such as Isabelle and Coq have been successfully used for
the formalization and verification of whole operating system kernels [22], optimized
compilers [28] and many other developments. Despite these achievements and many
successful fully automatic reasoning tools, even theorems that humans would deem
trivial can sometimes not be proved automatically (e.g. due to the undecidability of
certain logical systems). For handling these, proof assistants nowadays come with a
large number of tools to build specialized automation.

In the following sections, four different levels of proof automation and abstraction
are discussed. They are organized by the level of abstraction and usability they provide
and evaluated with regard to how they are used in both the Iris formalization in
Coq and our port. For this, we employ and reference a spin lock implementation in
HeapLang throughout the chapter. This implementation can also be found in both the
Iris and the Diaframe formalization and is also mentioned in related works [25, 32].
For brevity, the focus is put only on the release method shown in listing 9 together
with its specification. In addition, the relevant predicates are defined in listing 10. The
corresponding Isabelle/HOL code is in general equivalent and, therefore, omitted. The
core idea of this example is a simple lock that guards some resources R by connecting
the ownership of the ghost variable γ with a physical heap cell l containing a boolean
flag. The boolean flag denotes whether the lock is held by a thread and is checked and
set with atomic operations utilized in further functions not shown here. For this section,
just the release method is enough, as it already requires the handling of invariants
and ghost state in the combination with weakest preconditions, but involves no further
complexity such as atomic memory access. Apart from the introduced predicates, the
locked assertion introduced in section 5.3 is also reused.

The release function is defined as a HeapLang lambda term and takes a location
variable l as an input, to which it stores (←−) the value false. For the predicates,
points-to facts l 7→x, which denote that the HeapLang heap contains a cell at location
l with contents x, and the invariant implementation inv are introduced as auxiliary

notions. In this context, the function call inv N P corresponds to P
N

.
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Definition release : val := λ : "l", "l" ←− #false.

Lemma release_spec γ lk R :
is_lock γ lk R ∗ locked γ ∗ R ⊢ WP (release lk) {v. ⌈v = #()⌉ ∗ True}

Listing 9: Release method of spin lock.

Definition lock_inv (γ : gname) (l : loc) (R : iProp Σ) : iProp Σ :=
∃ b : bool, l 7→ #b ∗ (⌈b = true⌉ ∨ ⌈b = false⌉ ∗ locked γ ∗ R).

Definition is_lock (γ : gname) (lk : val) (R : iProp Σ) : iProp Σ :=
∃ l : loc, ⌈lk = #l⌉ ∧ inv N (lock_inv γ l R).

Listing 10: The predicates used for the spin lock specifications.

6.1 Low level proof principles

Proofs in both Coq and Isabelle are essentially data structures in their respective
implementation languages OCaml and Standard ML. Therefore, they can be constructed
at the implementation level by meta functions over proof states. These functions are
called tactics in both systems and, apart from their types, are just normal functions in
the respective languages. This also means that they can perform arbitrary computations
apart from changing the proof state. Such computations are commonly used for debug
printing or storing and retrieving of data from a global storage. However, the actual
proof state transformations follow strict rules and can’t break the logic’s soundness.
The systems come with several tools to manipulate the proof state in standard ways. For
Coq, proof state manipulation typically includes the construction of a proof program
term. In contrast, Isabelle tactics mostly perform resolution with a rule to rewrite or
substitute the goal term. Despite this difference in effect on the underlying data, many
standard tactics in both systems can be used in similar ways.

In Isabelle, the resolve_tac tactic is one of the most fundamental proof principles,
as it performs higher-order resolution of the goal with a set of given theorems. This
allows the user to reason in a backwards way by refining the goal to a possibly easier
to solve formula. Therefore, resolve_tac can be used in a comparable way to Coq’s
apply tactic.

The usefulness of these tactics becomes apparent with the following example:

locked γ ∗ R ⊢ locked γ ∗ R

locked γ ∗ R ∗ l 7→ #false ⊢ locked γ ∗ l 7→ #false ∗ R

This is a single step in the proof of release_spec and denotes that for proving the
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lower formula it suffices to prove the upper one with the points-to fact removed on
both sides. The justification for this step are the rules Frame and Move2R depicted
in eq. (6.1). The step can be performed via two applications of resolve_tac; first to
switch the order of the right-hand side with Move2R, then to remove the points-to fact
with Frame.

Frame

P ⊢ Q

P ∗ R ⊢ Q ∗ R

Move2R
∆ ⊢ P ∗ R ∗Q

∆ ⊢ P ∗Q ∗ R

Refl

P ⊢ P
(6.1)

Even though this example only shows a very basic reasoning step, most sophisticated
(automated) proof utilities are implemented based on such fundamental steps. For
this, the tactics are combined via self-explanatory tacticals such as THEN or REPEAT in
Isabelle. Coq provides similar functionalities, albeit with different names. In case a user
needs to write custom tactics in OCaml, they need to develop a Coq plugin containing
those, which can only be used after recompiling the system with the new plugin
included. In contrast, Isabelle’s ML tactics can also be defined at theory evaluation time
and therefore be developed in parallel to the formalization. Isabelle/ML’s integrated
Standard ML parser and interpreter is the reason for this advantage. Despite the
apparent disadvantage in comparison to Isabelle, Coq also has several powerful, yet
easy-to-use facilities to define sophisticated proof automation methods, which are
described in the next sections.

6.2 Higher level proof principles

Although low level tactics provide fine-grained control over the handling of proof goals,
they are often too verbose and cumbersome to use. Especially the need to recompile
Coq plugins when changing OCaml tactics slows down development. In addition,
many tactics do not require the fine-grained control a low level tactic provides but can
be expressed in higher level patterns such as proof term matching and control flow
tacticals. For this reason, both Isabelle and Coq have been complemented with higher
level tactic languages that require little to no low level code for defining useful proof
procedures.

There are several higher level meta-programming languages for Coq tactics, yet
the Iris formalization and specifically the Iris Proof Mode [25] make only1 use of the
Ltac tactic language [10, 18]. It contains constructions to match a Coq term against
user provided patterns, apply tactics to proof states, and control the sequence of these
tactics. In addition, Ltac provides facilities to also parse arguments such as hypothesis
names in the same way as common builtin Coq tactics do. More importantly, the Ltac
language contains primitives to operate on tactic values as well as Coq syntax items.

1The formalization also contains a few lines of Ltac2 code used to handle string encoding. Yet, we ignore
these as Ltac2 is the dedicated, but still experimental, successor of Ltac.
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The latter functionality allows Ltac users to define both pattern matching against and
partial evaluation of Coq terms. Ltac also supports anonymous tactics as well as local
definitions and can, thus, be used to define complex tactics with a straightforward
structure. Moreover, Ltac comes with a number of small helper functions to check
given terms for certain properties and guide the tactical control flow based on these.
In summary, Ltac provides the Coq user with all necessary tools to build high level,
flexible, and expressive tactics that can be used to guide automatic proof search or
improve the interactive proof experience.

In contrast to Coq, Isabelle’s low level tactics, i.e. ML level tactics, are easier to use
and are, thus, more often utilized for highly specialized automated solvers. Despite this
fact, Isabelle comes with the Isar framework [48, 50] that allows for high level reasoning
in both Isabelle/Pure and object logics.

The Isar framework allows the user to write proofs in the Isar proof language in one
of two styles2: either in the so called procedural style indicated by the apply keyword or
in the structured style. The latter style supports explicitly named auxiliary lemmas and
intermediate proof steps as well as high level reasoning principles such as locally fixing
a variable or defining a term. It also features structured case distinction and induction
proofs and deductive reasoning threads. Due to the explicit intermediate states and
sequence of proof steps, this style offers a great similarity to classical mathematical
proofs on paper and is often preferred over procedural style proofs for its clarity.

Procedural Isar proofs consist of proof scripts similarly to Coq, where single steps
consist mostly of the apply keyword followed by an Isar method call. Proofs in this
style are often used for prototyping automated methods and are generally discouraged
for all but very short proofs by the Isabelle Community Conventions. Yet, procedural
proofs are more commonly utilized in the context of program verification proofs. Apart
from procedural poofs, the underlying Isar methods are also the basic building blocks
for any reasoning in Isar. They abstract tactical reasoning from the raw goals to the Isar
proof context and are, therefore, roughly equivalent to Ltac tactics. Isar methods can
either be defined in terms of ML code or within the Eisbach method language [30]. The
Eisbach language was directly inspired by the Ltac language and, as a result, features
similar functionalities. Of these, the ability to pattern match proof goals, lemmata and
arbitrary terms as well as define control flow of methods similarly to the control flow
at the tactic level are the most relevant ones. In addition, Eisbach provides the user
with simple tools to define method arguments that are either other methods, typed
terms, (possibly named) theorems, or temporary additions to theorem databases.

Despite their similarities, Eisbach is by design strictly less powerful than Ltac. For
example, Eisbach’s pattern matching method is rather limited in comparison to the
Ltac version. On top of that, Eisbach has no local definitions or term transformation
procedures other than destructuring. These shortcomings are justified by Isabelle’s

2It is also possible to mix the two styles. However, mixing both styles is discouraged by the Isabelle
Community Conventions in all circumstances.
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method framing =
match conclusion in "_ ∗ P ⊢ _" for P⇒ ‹moveR P, rule Frame, framing?›
| _⇒ ‹rule Refl›

Listing 11: The framing method to automatically solve goals with framing.

inclusion mechanism for ML code, which allows the user to define the missing parts
as Isar level commands that can be independent from Eisbach. For this reason, the
language serves the purpose of providing a minimal framework and examples for how
to construct one’s own meta language based on it rather than being an equivalent
meta-programming language to Ltac. Nonetheless, Eisbach methods facilitate strong
automation even without ML extensions.

As an example, the aforementioned subgoal that occurs in the proof of release_spec
can be proven completely by a simple, yet generic Eisbach method. To be more precise,
this goal requires only a simple handling of frames to be proven:

locked γ ∗ R ∗ l 7→ #false ⊢ locked γ ∗ l 7→ #false ∗ R

The method in listing 11 is able to prove this goal fully automatically. For this, it
relies on another method moveR, which moves a given term to the head position in the
right-hand side of the entailment if possible. The implementation of such a method
can be done in several different ways but is not relevant for this example. The framing

method matches the proof goal conclusion against a pattern with an entailment and
a single fixed variable. This variable gets instantiated in the case of a match and can
then be used as input to other methods. If the proof goal still contains a separating
conjunction in its left side, its head will be searched for in the right-hand side and
moved to the respective head position. After this step, the Frame rule can be applied
with the rule method, which in this context is equivalent to the resolve_tac tactic. In
a next step, the method framing is called again recursively to remove more frames if
possible, i.e. the ? operator denotes allowed failure. In the other case, the method tries
to solve the goal by reflexivity. In general, the Eisbach method is more generic than the
tactic based approach above, as it can automatically find the right moving rules.

6.3 Basic proof automation methods

Both the Isabelle and Coq systems come with a number of included automated solvers
that support standard formalization methods. Higher-order logic programming is
one of these methods supported by both systems (indirectly). This kind of logic
programming can be used to both classify and compute logical entities in both HOL
and the CIC. To simulate logic programming in an interactive theorem prover, one
can, for example, define clauses as predicates and theorems and use proof search
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mechanisms that can do unification, rule application and backtracking to evaluate the
logic program in a procedural way. Although this approach works for both Coq and
Isabelle, the idiomatic usage differs significantly in these systems.

It is most idiomatic to implement logic programming in Coq by the use of type
classes3. This approach is heavily utilized by several large Coq developments including
the Iris Proof Mode [25] and was first introduced by Spitters and van der Weegen [44].
Type class based logic programming is based on the idea of encoding predicates over
values, types, and facts into a single type class and using the class instances as clauses.
Coq’s type class instance search algorithm can then compute the correct instance for
given parameters. The Frame class is a simple example used to compute the remainder
of a framing operation, i.e. a symmetric removal of equivalent terms on both sides of
an entailment. This class is defined as

Class Frame P Q R := frame : R ∗ Q ⊢ P

and will, given a hypothesis Q and a conclusion P, compute the remaining conclusion R

after a backwards-framing step, e.g. by eq. (6.2).

FrameLP
Frame P Q R S ⊢ R

S ∗Q ⊢ P
(6.2)

A simple instance can be defined like

Instance frame_sep_refl P Q : Frame (P ∗ Q) Q P .

As described before, type classes are not a native part of Coq’s type system but
rather a special way of using dependent records [43]. Similarly, the type class instance
search method is based on Coq’s eauto tactic and a custom fact database that stores
instances. This tactic performs bounded proof search based on the aforementioned
principles with the stored instances as applicable rules and will fail if no fitting
instance was found. The underlying search algorithm can not only be adjusted with
several parameters to fit different use cases but also exchanged for a user-provided
custom instance search or computation method (cf. [18, chapter Typeclasses] or [40,
chapter UseAuto]). In addition to these possible optimizations, type class based logic
programming has another great advantage over more naive approaches: Type class
constraints are resolved independently from rule application and unification. As a
result, rules are not applied if the type class constraints can’t be solved, which makes
earlier backtracking possible and aids automation.

In contrast to Coq, type classes in Isabelle/HOL can not be used to encode logic
programming. Instead, users can utilize (inductive) predicates, introduction rules

3It is also possible to either use plain (inductive) predicates, theorems, and a custom decision procedure
or canonical structures to achieve logic programming in Coq. However, since the Iris formalization
only makes use of type classes to this end, we ignore these alternatives for the scope of this work.
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and Isabelle’s Classical Reasoner package to achieve an equivalent form of logic pro-
gramming. Although this is fundamentally the same approach underlying the type
classes in Coq, the Isabelle variant requires more boilerplate code to set up custom
logic programming databases (e.g. with named theorems) and add the corresponding
attributes to the introduction rules. With this encoding, the aforementioned Frame

predicate is equivalent to

definition frame where frame P Q R ≡ R ∗ Q ⊢ P

named_theorems frame_rule

lemma frame_refl [frame_rule]: frame (P ∗ Q) Q P

The Classical Reasoner package is a generic Isabelle/Pure library that contains several
different (semi-)automated proof methods for solving goals in classical (first order)
logic [50, chapter 9.4]. All of these are based on the fundamental idea of simulating
sequent calculus style reasoning with natural deduction rules. These rules come in
three different flavors: introduction, destruction, and elimination rules. Introduction
rules are primarily meant for backward-chaining of facts, i.e. exchanging the current
goal with the premise of the rule if the goal can be unified with the rule’s conclusion.
On the contrary, destruction and elimination rules are meant to deduce new facts from
assumptions and are thus used for forward reasoning. Thereby, the difference between
destruction and elimination rule is solely the syntactic form they are defined in. In
addition to the differentiation of the rule type, each rule can be safe or unsafe. An unsafe
rule can potentially lead to an unprovable goal and should therefore not be applied
eagerly, whereas safe rules can not lead to such goals and are allowed to be applied
eagerly. The important point here is that the classification needs to be done by the user,
which means that they need to figure out whether a rule is safe to use.

Apart from the classical rules, some solvers also support simplification rules and
enable combining several rewriting and deduction steps into a single method call.
Due to this ability and the greater number in different search strategies, the Classical
Reasoner package methods are in general stronger than equivalent Coq tactics. However,
for the use case of logic programming both systems are essentially on par as this kind
of reasoning requires no simplification and will often operate on only a small amount
of possible rules.

Both the Coq and Isabelle versions of the frame predicate can be used together with
the framing rule FrameLP in eq. (6.2) to finish the already known intermediate goal of
the proof of release_spec from listing 9:

locked γ ∗ R ∗ l 7→ #false ⊢ locked γ ∗ l 7→ #false ∗ R

If one wants apply the framing rule to this goal in a backwards fashion, they need to
find a suitable ?R such that frame (locked γ ∗ l 7→ #false ∗ R) (l 7→ #false) ?R is a
valid instance. It is easy to see that ?R needs to be (locked γ ∗ R). Both the type class
based approach in Coq and the classical reasoning approach in Isabelle can find this
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solution without problems. The new goal is then

locked γ ∗ R ⊢ locked γ ∗ R

which holds trivially due to the reflexivity of entailments in separation logic and can
alternatively also be proved via framing. The framing approach via logic programming
is especially better suited for automatic proofs, as it does not require the same moving
of terms as the methods used above.

6.4 Sophisticated proof automation for Iris proofs

All aforementioned reasoning principles are quite helpful for interactive and mostly
procedural proofs but in general not strong or ergonomic enough to automatically solve
interesting goals, especially in the Iris base logic. Although it is not possible to have a
full proof automation for such a complex and strong logic, there are still many single
steps that can be automated.

6.4.1 Iris Proof Mode

The Iris Proof Mode (IPM) [25] combines many such steps into practical tactics to
support users in interactive, high level proofs. To this end, the user only needs to
combine the IPM tactics according to their own high level proof idea. IPM tactics
are mostly implemented as Ltac tactics and contain reasoning steps based on several
custom logic programming type classes like Frame. They are also meant to mimic
existing Coq tactics in how they work and which arguments they take. For example, the
iApply tactic corresponds to Coq’s apply tactic but tries to apply rules that involve Iris
entailments by using Iris level hypotheses. These hypotheses are organized in an own
proof context that separates pure Coq premises, as well as persistent and spatial Iris
hypotheses and allows referring to object logic hypotheses by a given name similarly
to meta level premises in the normal proof mode. To this end, the IPM ensures that the
correct rules for reasoning about Iris entailments are used and a normal form for the
hypotheses is maintained.

It is insightful to explore how the iDestruct IPM tactic works on the hypothe-
sis Hlock: is_lock γ lk R, which arises in the proof of the specification in list-
ing 9. In this context, the exact tactic invocation used in the Iris formalization is
iDestruct "Hlock" as (l ->) "#Hinv". It first unfolds the definition of is_lock as
described in listing 10. It then continues to introduce the existentially quantified vari-
able into the environment as a fresh variable with name l. In a next step, the IPM tactic
splits the conjunction, moves the pure equality into the context and uses it to rewrite
all occurrences of lk to l. In the last step, the tactic moves the remaining invariant into
the persistent hypothesis context and returns the new proof state back to the user.
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6.4.2 Diaframe

In contrast to the IPM, the Diaframe library for Iris [32] aims not at improving interactive
proofs but proving high level Iris goals fully automatically. Diaframe achieves this
high level of automation by performing a proof search that is guided by the goal’s
logical connectives and utilizes a bi-abduction based hint system. Hints of this form
can be used to compute both a frame and antiframe, i.e. remaining terms on the
hypothesis and goal side, cf. P ∗ antiframe ⊢ Q ∗ frame. Moreover, they can be seen
as goal transformation rules that can be applied in certain situations and can also
be provided by the user. Abstractly speaking, the proof search procedure consists of
alternating symbolic execution of program steps under WP predicates and two additional
intertwined reasoning steps. These steps consist of rewriting the goal until it reaches
a normal form and searching for an applicable hint afterwards. These hints are then
used to do another reasoning step, leading to another recursive application of the proof
search procedure. The proof search steps are implemented as Ltac tactics, with type
classes to guide the rewriting and hint search. By applying hints of the aforementioned
bi-abduction form, a fixed hypothesis (P) and a fixed goal (Q) are consumed and in
exchange the computed frame and antiframe terms are inserted into the goal.

Due to this twofold focus on one hypothesis and goal each, the hint search procedure
is subdivided into two phases. In the first phase Diaframe tries to find hints primarily
by matching against the hypothesis, whereas in the second phase it focuses more on the
goal term. These phases are called left phase and right phase respectively [31]. The two
phase heuristic makes it possible to treat certain atomic formulae such as invariants
as nested connectives, too. More generally, the hint search iterates over all Iris level
hypotheses and tries to find an applicable hint. It does so by first checking all hints in its
database (i.e. all instances of the according type class) and, if there is no applicable hint,
uses recursive hint rules to conduct a syntax-directed search with backtracking to find
a fitting compound hint instead. This step contains the two phases described above. If
there is no applicable hint, Diaframe backtracks to the next hypothesis and repeats the
hint search for this term. If it can’t find an applicable hint for any hypothesis, Diaframe
tries to apply a last resort rule, i.e. a rule that might not rely on any hypothesis and
should not be applied if any other rule could be applied instead. The introduction of
fancy updates eq. (6.3) is an example of such a last resort rule.

P ⊢ |⇛E E P (6.3)

This rule can both be used to introduce a new fancy update on top of a hypothesis or
drop the topmost fancy update on the goal. The latter can lead to the goal becoming
unprovable, as many hypothesis transformations depend on the presence of certain
modalities or wrappers on the goal side. For this reason, the rule is only used as a last
resort to drop a fancy update on the goal. For similar reasons, Diaframe does only
support a limited, but very common subset of Iris goals. For any other goals, it tries to
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solve as much as possible and returns the remaining proof obligations back to the user
for them to continue in an interactive way. Despite these limitations, Diaframe employs
a strong enough proof automation to automatically prove the spin lock example without
any additional hints or the need to switch to interactive mode.

6.4.3 Automation in Isabelle

Both the IPM tactics and the Diaframe proof search procedure are implemented in
terms of Ltac tactics and type class logic programming. For this reason, it is rather
straightforward to port either of these to Isabelle/HOL based on the translations
developed above. Despite the possibility of a direct port, we decided to use a more
idiomatic way for providing similar functionalities in Isabelle. For example, we decided
to not port the IPM proof context with its named hypotheses but keep the hypotheses
in a single term. Whereas a name indexed list of premises mirrors the standard Coq
proof mode and is, therefore, more idiomatic in Coq, Isabelle proofs do not contain
such a list in general. Instead, the Iris rules are normalized to either work on the whole
hypothesis term or the head term of a separating conjunction of several hypotheses. To
apply a rule to a specific hypothesis, the system then needs to move the correct term to
the head position by utilizing the fact that the separating conjunction is commutative
and associative. It is even more versatile to move terms by splitting/framing rules
based on the aforementioned logic programming.

Although the structured proof style of Isar would make the proof structure easier to
understand, it does not work well for more involved Iris proofs. The reason for this is
that many Iris rules rely on the structure of the goal term and can only be used to a
limited degree in a more structured way. As a result, we find it more idiomatic to keep
the procedural proof style of the IPM for interactive proofs and focus on using Isabelle’s
basic proof automation principles to make them as straightforward as possible.

It is noteworthy that the IPM tactics and our corresponding methods differ in
the format for arguments. Whereas the Ltac tactics take pattern strings containing
hypothesis names, the Isabelle counterparts take pattern terms instead. These pattern
terms can contain schematic variables, i.e. free variables that Isabelle’s higher-order
unification procedure can instantiate, and are mostly used to match hypothesis terms.
Patterns with more than one atom are encoded as separating conjunctions of all involved
atoms. Due to Eisbach’s matching facility, the single atom patterns can be accessed
via term destructuring. Pattern terms are especially useful for moving regardless of
the exact moving method. To this end, the pattern ▷(?l 7→?v) can be used to move
the atom ▷l 7→ #x to the head of the hypothesis term for further rule applications.
Similarly, patterns can also be used to guide splitting and framing. Both splitting and
framing with more than one atom to extract can be a difficult problem to solve via
logic programming as rules must assume a certain order of atoms to not get stuck
or loop forever. The goal Frame (P ∗ Q ∗ S) (S ∗ P) ?R would be an example where
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this becomes problematic. Here, one requires a rule that relates the S in both the
first and the second argument in a reasonable way. If the method instead matched
the head of the first argument, i.e. S, against the pattern S ∗ P, it can find that it can
move this atom to the second argument. Normally, framing and splitting goals can
be thought of as computing a third argument to a logic programming predicate. In
this case, they rather divide the atoms in the first argument — the input term — into
the two other arguments based on the given pattern. This can be done easily with
Eisbach’s term matching and is, therefore, an important tool for building sophisticated
(semi-)automation methods in Isabelle.

On another note, the aspect whether the patterns include wrappers such as modalities,
is also relevant. This mostly makes a difference for splitting goals but not for framing
goals, as framing makes it possible to move terms out of certain wrappers. In the context
of splitting goals, we classify pattern terms according to this property into two classes:
inner and outer patterns. Whereas inner patterns contain only the required atoms, outer
patterns also contain all wrappers that should be on top of the atom. The former can
potentially match too many atoms, whereas the latter requires explicit handling of
all wrappers via pattern matching on both the pattern term and the input term. As
an example, consider the input term P ∗ ▷(Q ∗ P) where one would like to extract the
term ▷P. In this case, simply P would be the correct inner pattern and matches both
occurrences of this atom. On the other hand, ▷P would be the outer pattern leading to
exactly the term one wanted to extract. Despite this potential problem, we found that
in most cases the inner pattern works reasonably well.

In general, our approach allows us to develop several useful semi-automated proof
methods on par with corresponding IPM tactics. Most of these methods are written
exclusively in Eisbach; only a few ML methods are necessary to overcome certain
Eisbach limitations. An exemplary proof of the release specification with these
methods is depicted in listing 12. This proof is only slightly simplified, but can
otherwise be found in our development [42, SpinLock.thy]. The general idea of the
proof is to use the wp_store rule in line 14, which describes the semantics of a store
in HeapLang. This rule requires a points-to fact about the location to which a new
value gets stored as a hypothesis. The proof starts with unfolding relevant terms
and beta-expanding the lambda abstraction in the definition of release. For this,
the iDestruct method is used to both execute the beta-expansion and destruct the
parameter lk into the underlying location value. In the next step, the invariant inside
is_lock is accessed to extract the required points-to fact in line 7. Here, the iMod

method applies the inv_acc rule to access the invariant and removes modalities from
the extracted hypotheses. Due to the definition of inv, the extracted proposition is
embedded in a later modality. This modality then needs to be handled explicitly
to be able to access the points-to fact inside lock_inv. For this reason, move_sepL
moves the correct term to the head position, where the points-to fact is extracted and
the later modality is stripped with later_elim. Finally, the wp_store rule is applied
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1 lemma release_spec:

2 is_lock γ lk R ∗ locked γ ∗ R ⊢ WP (release lk) { λv. ⌈v = ()⌉ ∗ True }

3 (* Unfold release definition *)

4 apply (simp add: release_def is_lock_def . . . )
5 apply (iDestruct rule: wp_pure[OF pure_exec_beta])

6 (* Open invariant *)

7 apply (iMod rule: inv_acc[OF subset_UNIV])

8 (* Apply wp_store *)

9 apply (move_sepL ▷?P)
10 apply iExistsL

11 apply (iApply rule: upred_entail_eqL[OF upred_later_sep])

12 apply (move_sepL ▷(?l 7→?v))
13 apply later_elim

14 apply (iWP rule: wp_store)

15 (* Cleanup *)

16 apply (entails_substR rule: upred_laterI)

17 apply (entails_substR rule: wp_value)

18 apply (iApply_wand_as_rule (∃x. ?P x) (?l 7→?v ∗ own constr_lock ?n ?x ∗ R))
19 apply (iExistsR False)

20 apply (entails_substR rule: upred_laterI)

21 by frame_single+

Listing 12: Proof of release_spec with IPM-inspired Eisbach methods.

with the iWP method, which handles additional steps necessary when reasoning about
program steps with a weakest precondition. In the last steps of the proof, the remaining
goal terms are cleaned up by stripping them of modalities, closing the invariant, and
framing them. As an intermediate step, the invariant is closed implicitly in line 18
by exploiting the corresponding magic wand hypothesis obtained from opening it
earlier. The iApply_wand_as_rule method utilized for this step is a specialized version
of iApply and searches for a magic wand that has the first argument (i.e. ∃x. ?P x)
as its left-hand side. It then opens a new subgoal in which the user must prove that
this left-hand side proposition follows from the hypotheses that match the second
argument to the method; the points-to fact, the ghost variable of the lock, and the
locked proposition in this case. This new subgoal can then be proven in parallel to the
remainder of the original goal by first instantiating an existential quantifier and then
dropping a last later modality before finishing the proof with framing.

Similarly to the described Eisbach methods for interactive proofs, we also built an
experimental, fully automated proof method based on the general ideas of Diaframe’s
proof search procedure. For this, the procedure iterates over the hypotheses by de-
structuring the separating conjunctions similarly to Diaframe’s hint search. For each
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hypothesis, it then calls the auto method from the Classical Reasoner package with a
specific selection of simplification and introduction rules. These rules cover all basic
rewriting steps and also most standard Diaframe hints and can be extended via named
theorems. Unfortunately, this approach is not strong enough to do all relevant proof
steps, because some of these require a high proof search depth and the correct order of
rule applications. In addition, the binary classification into safe and unsafe does not
suffice to provide the proof search mechanism with enough information about when to
use which rule. Some steps require a certain sequence of rules that can not be encoded
simply by these standard attributes. In this case, simple, yet specialized Eisbach meth-
ods are required. For example, framing and moving as well as the application of last
resort rules require this approach. Handling these cases can lead to unprovable goals
and, therefore, introduce unnecessary overhead to an exhaustive proof search via the
Classical Reasoner package. Nonetheless, the solver is able to prove the specification of
release fully automated while following the same proof ideas as described in listing 12.
The corresponding lemma can be found in our development [42, SpinLock.thy] as well.

In conclusion, our experiment shows that it is possible to have sophisticated full
automation for Iris proofs in Isabelle. Some steps performed by explicit Ltacs in
Diaframe can even be performed by Isabelle’s inherent proof automation mechanisms.
Yet, our experiment did not include a thorough handling of rule application to nested
arguments. Although Diaframe’s recursive hint search could be adopted to solve this
problem, we did not implement this or any other solution for our experimental solver.
However, we came up with an alternative solution approach that was not implemented
due to time constraints. This approach would adapt reasoning rules on the fly to the
current goal by leveraging a similar recursive distinction as Diaframe but via ML code.
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7 Discussion and Conclusion

In this thesis, we present our partial port of the Iris framework to Isabelle/HOL. We
also investigate several intricate details of our port in chapter 5 and show how to
translate the underlying Coq features into HOL. To summarize, Isabelle’s type classes
and locales in combination with custom on-demand code generation from Isabelle/ML
suffice to port most of the Iris functionalities. As our port contains all relevant parts to
fully formalize and prove a few selected examples, there are no generally necessary
parts left that can not be ported to Isabelle. Despite this, one limitation remains with
regard to pure propositions. The encapsulated meta assertions can in general contain
arbitrarily complex expressions that might also make use of Coq functionalities that
can in general not be translated to Isabelle/HOL. In practice, this limitation is quite
unlikely to ever be relevant as most interesting program logic semantics can already
be expressed within the Iris base logic and its standard extensions such as invariants.
Even though this caveat is unlikely to ever be of relevance, the described problems in
correctly translating the construction of the iProp type limit the actual usefulness of a
full port of Iris.

7.1 Discussion of a full Port

An optimal full port of the Iris framework would consist of a definitional extension to
HOL, i.e. an extension that can be defined completely inside the HOL logic and type
system, with only very little overhead and a convenient user experience. Our approach
to a shallow embedding of the Iris logic can not be used for an definitional but only for
an axiomatic extension based on our results. This fact limits the usability of our port to
developments that can afford to use this extended version of HOL. On the other hand,
more generic libraries that must not assume such an extension can not make full use of
this Iris port. Even if the axiomatic extension is acceptable for some developments, it is
not yet known whether the axiomatization is sound. A proof of this property would
need to be developed outside of HOL and was not realized in the scope of this work. Yet,
the proof of the America-Rutten theorem and the associated fixed-point construction in
Coq are a strong indication that the axiomatization is justified. Moreover, it is quite
common to define types in Isabelle/HOL axiomaticly and integrate them by providing
some kind of isomorphism to other types or sets. In general, axiomatic extensions
to HOL are not uncommon, although definitional extensions are usually preferred
if possible. As a result, our port can provide users with the same functionalities as
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the Coq formalization, but requires them to accept our axiomatization based on the
mentioned justifications.

Similarly, a deep embedded port faces caveats with regard to overhead and con-
venience, even though it solves the problem of the iProp construction. Due to the
aforementioned reasons, any deep embedding of the Iris base logic can not be translated
to its corresponding semantics without the use of ML-based code generation. Although
the generated semantics can be used to prove the same kinds of formulae as with the
shallow embedded approach, it is not possible to reason about the translation process
from syntax to semantics. This also implies that one can not back-relate semantic
properties with the syntactic logical operators and, therefore, lack the ability to fully
utilize semantic based rewriting steps used in the context of proof automation. In
addition to the overhead of registering variable mappings and deep embedding HOL
terms for the pure predicate, this inability makes the deep embedding approach less
suited for a full port of Iris.

We conclude that a full port of the Iris framework is technically possible, yet from a
proof engineering perspective not (yet) favorable. Further work may improve on this
situation, but our results show a theoretical bound on how useful a full port really
would be. Whereas the shallow embedding we employed for our partial port relies on
the axiomatization but allows for the same level of convenience as the Coq version, the
explored deep embeddings do work without the need for an axiomatization yet suffers
from limitations in accessibility.

7.2 Discussion of Automation

In addition to the question whether a full port of Iris is possible and feasible, this work
also explores how well Iris proofs can be automated in Isabelle/HOL in comparison to
Coq. We especially tried to find sufficient evidence to the widely believed superiority
of proof automation in Isabelle. Yet, our results show that the Coq formalization of
Iris already allows for very strong proof automation and any port to Isabelle can not
improve on it significantly. At the same time, we also developed methods to relate the
implementation of abstract reasoning principles in the Iris logic in both systems. In this
context, it became apparent that both the Ltac and the Eisbach languages are highly
useful for constructing sophisticated, idiomatic proof methods. To this end, the Ltac
language provides the high-level capabilities necessary to reason about dependently
typed proof goals without the overhead of writing a Coq plugin. Similarly, the Eisbach
language provides abstraction over common proof guidance patterns and can easily be
extended by more idiomatic, fully automated proof methods written in Isabelle/ML. In
conclusion, both languages can be used to build equivalent proof methods, at least in
the context of the Iris logic.

Whereas the similarities between Ltac and Eisbach hold for all kinds of developments,
the usage of logic programming and related ideas to guide Iris proofs is more likely to
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be only applicable in the constrained context of an embedded logic such as Iris. For
this kind of context, we can find no decisive indication that either of Coq or Isabelle
enable significantly better proof automation mechanisms. We trace this result back to
the fact that Iris does mostly rely on Coq specific features such as dependent types
for the sake of convenience only. None of the basic logical connectives or algebraic
structures relies ony any such features, resulting in our straightforward port and a
similarly straightforward translation of proof principles.

However, we have found one aspect of proof automation in which Isabelle has a
slight advantage over Coq. To be more specific, Isabelle comes with great mechanisms
to support the definition and handling of semantic subtypes and the Sledgehammer
tool for automatic proof search with the help of external tools. Both topics are not
in general Isabelle-specific but have Coq counterparts, which are just less idiomatic
and thus also less sophisticated. For example, the definition of uniform predicates as
shallow embedded semantic subtypes of HOL predicates can utilize the full power of
the lifting/transfer package, which makes defining new predicates or proving general
reasoning rules quite straightforward. The similar Coq procedure of sealing and
unsealing the uniform predicate definitions is simply less well integrated with general
proof automation and makes breaking the abstraction less idiomatic than in Isabelle.
Many fundamental proof rules for the Iris base logic can be directly derived from
transfering the proof goal to the semantic level and applying one of Isabelle’s standard
proof automation methods. In addition, more involved rules can often be solved by
either combining already defined rules or doing an transfer step and utilizing related
rules to reason at the semantic level.

In these cases, Isabelle’s Sledgehammer tool can often find all necessary theorems
completely automatic and, thus, reduce the amount of work that the user has to do.
Although the CoqHammer tool can be used in similar ways, it is deemed less idiomatic
than its Isabelle equivalent and is not as well integrated into the normal workflow of
a Coq developer. In general, both tools apply similar techniques for goal and proof
translation as well as the premise selection. Yet, it is not clear, whether they can be
compared in a neutral setting as they operate on quite different logics and existing
literature has not applied them to the same problems. Recent work by Desharnais et al.
[11] about Sledgehammer shows that it can solve around 70% of randomly chosen goals
from the Archive of Formal Proofs, whereas related work by Czajka et al. [8, 9] presents
that CoqHammer can solve around 40% of the goals in Coq’s standard library. These
results are obtained in contexts that are quite different from the Iris logic. Therefore, it
is possible that both tools perform comparably well in the Iris context due to it mostly
lying in a shared logical fragment. In practice, however, automatic proof search works
better in Isabelle due to its better integration into the normal proof workflow. It should
also be noted that both hammers can be fine tuned to fit a specific logical fragment
and might perform quite well for Iris’ logic and program logics instantiated in the
framework if done so.
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To conclude, our work has not found any significant difference in the proof automa-
tion capabilities for the Iris logic apart from a few technicalities. On the contrary, we
were able to confirm that both systems allow for quite sophisticated proof automation
techniques, which can be used to ease the use with and the development of the Iris
framework and its port.

7.3 Future Work

In this thesis, we conclude that a full port of Iris to Isabelle is possible, albeit not
optimal. Yet, we see several possible optimizations that could result in a truly useful
full port of Iris. First of all, it needs to be investigated further whether a shallow or a
deep embedding of the logic works better. For this, it can be expected that the America-
Rutten theorem is provable in Isabelle/HOLCF, which is a definitional embedding of
domain theory in HOL and supports reasoning about functors, inter alia. Such a proof
would already increase the confidence in our axiomatic extension to HOL. Similarly,
proving our axiomatization to be sound would justify the chosen approach. Moreover,
it should be investigated whether the actual fixed-point construction for iProp can be
done in Isabelle/HOLCF and whether it could be used in the context of the otherwise
normal HOL types, as well.

For a deep embedding, the Nominal2 package by Urban et al. [47] might also be
worth investigating, as it can improve the general handling of bound variables, e.g. in
quantifiers. This might not solve the problem of the semantics of these binders but
would be a stronger argument for the deep embedding. In general, our exploration of
how well a deep embedding could be used for full Iris proofs was not exhaustive and
introduces the need for further investigation.

We also expect that further work on automation in the port can be fruitful. In this
context, we suggest to further investigate how the strongly context-dependent and
verbose reasoning in the Iris logic could be integrated with structured Isar proofs
with fully automated intermediate steps. An integration with the existing Refinement
framework is another possible research direction from which our port might profit. In
addition with the already strong automation of this library, this could result in a strong
and very flexible framework for developing fully verified algorithms from a purely
functional high-level specification. The Refinement framework could then transform
the high-level specification into a lower level, equivalent imperative program, for which
the Iris logic would provide the user with the ability to reason in more detail than with
the current model.
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